Cargando…
Neural population geometry: An approach for understanding biological and artificial neural networks
Advances in experimental neuroscience have transformed our ability to explore the structure and function of neural circuits. At the same time, advances in machine learning have unleashed the remarkable computational power of artificial neural networks (ANNs). While these two fields have different to...
Autores principales: | Chung, SueYeon, Abbott, L. F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695674/ https://www.ncbi.nlm.nih.gov/pubmed/34801787 http://dx.doi.org/10.1016/j.conb.2021.10.010 |
Ejemplares similares
-
Separability and geometry of object manifolds in deep neural networks
por: Cohen, Uri, et al.
Publicado: (2020) -
The geometry of representational drift in natural and artificial neural networks
por: Aitken, Kyle, et al.
Publicado: (2022) -
The geometry of masking in neural populations
por: Ringach, Dario L.
Publicado: (2019) -
The structure dilemma in biological and artificial neural networks
por: Pircher, Thomas, et al.
Publicado: (2021) -
Prediction of Bead Geometry with Changing Welding Speed Using Artificial Neural Network
por: Li, Ran, et al.
Publicado: (2021)