Cargando…
Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/ https://www.ncbi.nlm.nih.gov/pubmed/38047970 http://dx.doi.org/10.1186/s11671-023-03933-2 |
_version_ | 1785154455712301056 |
---|---|
author | Ribeiro, Geyse A. C. de Lima, Scarllett L. S. Santos, Karolinne E. R. Mendonça, Jhonatam P. Macena, Pedro Pessanha, Emanuel C. Cordeiro, Thallis C. Gardener, Jules Solórzano, Guilhermo Fonsaca, Jéssica E. S. Domingues, Sergio H. dos Santos, Clenilton C. Dourado, André H. B. Tanaka, Auro A. da Silva, Anderson G. M. Garcia, Marco A. S. |
author_facet | Ribeiro, Geyse A. C. de Lima, Scarllett L. S. Santos, Karolinne E. R. Mendonça, Jhonatam P. Macena, Pedro Pessanha, Emanuel C. Cordeiro, Thallis C. Gardener, Jules Solórzano, Guilhermo Fonsaca, Jéssica E. S. Domingues, Sergio H. dos Santos, Clenilton C. Dourado, André H. B. Tanaka, Auro A. da Silva, Anderson G. M. Garcia, Marco A. S. |
author_sort | Ribeiro, Geyse A. C. |
collection | PubMed |
description | MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO(x) nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO(x) nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g(−1) at a charge/discharge current density of 1.0 A g(−1) in a 2.0 mol L(−1) KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03933-2. |
format | Online Article Text |
id | pubmed-10695906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-106959062023-12-06 Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors Ribeiro, Geyse A. C. de Lima, Scarllett L. S. Santos, Karolinne E. R. Mendonça, Jhonatam P. Macena, Pedro Pessanha, Emanuel C. Cordeiro, Thallis C. Gardener, Jules Solórzano, Guilhermo Fonsaca, Jéssica E. S. Domingues, Sergio H. dos Santos, Clenilton C. Dourado, André H. B. Tanaka, Auro A. da Silva, Anderson G. M. Garcia, Marco A. S. Discov Nano Research MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO(x) nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO(x) nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g(−1) at a charge/discharge current density of 1.0 A g(−1) in a 2.0 mol L(−1) KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03933-2. Springer US 2023-12-04 /pmc/articles/PMC10695906/ /pubmed/38047970 http://dx.doi.org/10.1186/s11671-023-03933-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Ribeiro, Geyse A. C. de Lima, Scarllett L. S. Santos, Karolinne E. R. Mendonça, Jhonatam P. Macena, Pedro Pessanha, Emanuel C. Cordeiro, Thallis C. Gardener, Jules Solórzano, Guilhermo Fonsaca, Jéssica E. S. Domingues, Sergio H. dos Santos, Clenilton C. Dourado, André H. B. Tanaka, Auro A. da Silva, Anderson G. M. Garcia, Marco A. S. Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title | Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_full | Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_fullStr | Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_full_unstemmed | Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_short | Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
title_sort | zn‐doped mno(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/ https://www.ncbi.nlm.nih.gov/pubmed/38047970 http://dx.doi.org/10.1186/s11671-023-03933-2 |
work_keys_str_mv | AT ribeirogeyseac zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT delimascarllettls zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT santoskarolinneer zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT mendoncajhonatamp zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT macenapedro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT pessanhaemanuelc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT cordeirothallisc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT gardenerjules zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT solorzanoguilhermo zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT fonsacajessicaes zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT dominguessergioh zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT dossantoscleniltonc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT douradoandrehb zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT tanakaauroa zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT dasilvaandersongm zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors AT garciamarcoas zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors |