Cargando…

Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors

MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was...

Descripción completa

Detalles Bibliográficos
Autores principales: Ribeiro, Geyse A. C., de Lima, Scarllett L. S., Santos, Karolinne E. R., Mendonça, Jhonatam P., Macena, Pedro, Pessanha, Emanuel C., Cordeiro, Thallis C., Gardener, Jules, Solórzano, Guilhermo, Fonsaca, Jéssica E. S., Domingues, Sergio H., dos Santos, Clenilton C., Dourado, André H. B., Tanaka, Auro A., da Silva, Anderson G. M., Garcia, Marco A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/
https://www.ncbi.nlm.nih.gov/pubmed/38047970
http://dx.doi.org/10.1186/s11671-023-03933-2
_version_ 1785154455712301056
author Ribeiro, Geyse A. C.
de Lima, Scarllett L. S.
Santos, Karolinne E. R.
Mendonça, Jhonatam P.
Macena, Pedro
Pessanha, Emanuel C.
Cordeiro, Thallis C.
Gardener, Jules
Solórzano, Guilhermo
Fonsaca, Jéssica E. S.
Domingues, Sergio H.
dos Santos, Clenilton C.
Dourado, André H. B.
Tanaka, Auro A.
da Silva, Anderson G. M.
Garcia, Marco A. S.
author_facet Ribeiro, Geyse A. C.
de Lima, Scarllett L. S.
Santos, Karolinne E. R.
Mendonça, Jhonatam P.
Macena, Pedro
Pessanha, Emanuel C.
Cordeiro, Thallis C.
Gardener, Jules
Solórzano, Guilhermo
Fonsaca, Jéssica E. S.
Domingues, Sergio H.
dos Santos, Clenilton C.
Dourado, André H. B.
Tanaka, Auro A.
da Silva, Anderson G. M.
Garcia, Marco A. S.
author_sort Ribeiro, Geyse A. C.
collection PubMed
description MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO(x) nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO(x) nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g(−1) at a charge/discharge current density of 1.0 A g(−1) in a 2.0 mol L(−1) KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03933-2.
format Online
Article
Text
id pubmed-10695906
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-106959062023-12-06 Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors Ribeiro, Geyse A. C. de Lima, Scarllett L. S. Santos, Karolinne E. R. Mendonça, Jhonatam P. Macena, Pedro Pessanha, Emanuel C. Cordeiro, Thallis C. Gardener, Jules Solórzano, Guilhermo Fonsaca, Jéssica E. S. Domingues, Sergio H. dos Santos, Clenilton C. Dourado, André H. B. Tanaka, Auro A. da Silva, Anderson G. M. Garcia, Marco A. S. Discov Nano Research MnO(x)-based nanomaterials are promising large-scale electrochemical energy storage devices due to their high specific capacity, low toxicity, and low cost. However, their slow diffusion kinetics is still challenging, restricting practical applications. Here, a one-pot and straightforward method was reported to produce Zn-doped MnO(x) nanowires with abundant defects and tunable small cross-sections, exhibiting an outstanding specific capacitance. More specifically, based on a facile hydrothermal strategy, zinc sites could be uniformly dispersed in the α-MnO(x) nanowires structure as a function of composition (0.3, 2.1, 4.3, and 7.6 wt.% Zn). Such a process avoided the formation of different crystalline phases during the synthesis. The reproducible method afforded uniform nanowires, in which the size of cross-sections decreased with the increase of Zn composition. Surprisingly, we found a volcano-type relationship between the storage performance and the Zn loading. In this case, we demonstrated that the highest performance material could be achieved by incorporating 2.1 wt.% Zn, exhibiting a remarkable specific capacitance of 1082.2 F.g(−1) at a charge/discharge current density of 1.0 A g(−1) in a 2.0 mol L(−1) KOH electrolyte. The optimized material also afforded improved results for hybrid supercapacitors. Thus, the results presented herein shed new insights into preparing defective and controlled nanomaterials by a simple one-step method for energy storage applications. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s11671-023-03933-2. Springer US 2023-12-04 /pmc/articles/PMC10695906/ /pubmed/38047970 http://dx.doi.org/10.1186/s11671-023-03933-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
Ribeiro, Geyse A. C.
de Lima, Scarllett L. S.
Santos, Karolinne E. R.
Mendonça, Jhonatam P.
Macena, Pedro
Pessanha, Emanuel C.
Cordeiro, Thallis C.
Gardener, Jules
Solórzano, Guilhermo
Fonsaca, Jéssica E. S.
Domingues, Sergio H.
dos Santos, Clenilton C.
Dourado, André H. B.
Tanaka, Auro A.
da Silva, Anderson G. M.
Garcia, Marco A. S.
Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_full Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_fullStr Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_full_unstemmed Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_short Zn‐doped MnO(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
title_sort zn‐doped mno(x) nanowires displaying plentiful crystalline defects and tunable small cross-sections for an optimized volcano-type performance towards supercapacitors
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695906/
https://www.ncbi.nlm.nih.gov/pubmed/38047970
http://dx.doi.org/10.1186/s11671-023-03933-2
work_keys_str_mv AT ribeirogeyseac zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT delimascarllettls zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT santoskarolinneer zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT mendoncajhonatamp zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT macenapedro zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT pessanhaemanuelc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT cordeirothallisc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT gardenerjules zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT solorzanoguilhermo zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT fonsacajessicaes zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT dominguessergioh zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT dossantoscleniltonc zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT douradoandrehb zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT tanakaauroa zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT dasilvaandersongm zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors
AT garciamarcoas zndopedmnoxnanowiresdisplayingplentifulcrystallinedefectsandtunablesmallcrosssectionsforanoptimizedvolcanotypeperformancetowardssupercapacitors