Cargando…
Exploring interactions between socioeconomic context and natural hazards on human population displacement
Climate change is leading to more extreme weather hazards, forcing human populations to be displaced. We employ explainable machine learning techniques to model and understand internal displacement flows and patterns from observational data alone. For this purpose, a large, harmonized, global databa...
Autores principales: | Ronco, Michele, Tárraga, José María, Muñoz, Jordi, Piles, María, Marco, Eva Sevillano, Wang, Qiang, Espinosa, Maria Teresa Miranda, Ponserre, Sylvain, Camps-Valls, Gustau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695951/ https://www.ncbi.nlm.nih.gov/pubmed/38049446 http://dx.doi.org/10.1038/s41467-023-43809-8 |
Ejemplares similares
-
Synergistic integration of optical and microwave satellite data for crop yield estimation
por: Mateo-Sanchis, Anna, et al.
Publicado: (2019) -
Inferring causal relations from observational long-term carbon and water fluxes records
por: Díaz, Emiliano, et al.
Publicado: (2022) -
Soil and vegetation water content identify the main terrestrial ecosystem changes
por: Bueso, Diego, et al.
Publicado: (2023) -
Commentary on ‘Physics-informed deep learning parameterization of ocean vertical mixing improves climate simulations’ by Zhu et al.
por: Camps-Valls, Gustau
Publicado: (2022) -
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016)