Cargando…
Autoencoder neural networks enable low dimensional structure analyses of microbial growth dynamics
The ability to effectively represent microbiome dynamics is a crucial challenge in their quantitative analysis and engineering. By using autoencoder neural networks, we show that microbial growth dynamics can be compressed into low-dimensional representations and reconstructed with high fidelity. Th...
Autores principales: | Baig, Yasa, Ma, Helena R., Xu, Helen, You, Lingchong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696002/ https://www.ncbi.nlm.nih.gov/pubmed/38049401 http://dx.doi.org/10.1038/s41467-023-43455-0 |
Ejemplares similares
-
Bacterial Temporal Dynamics Enable Optimal Design of Antibiotic Treatment
por: Meredith, Hannah R., et al.
Publicado: (2015) -
Denoising of Optics Measurements Using Autoencoder Neural Networks
por: Fol, Elena, et al.
Publicado: (2021) -
Prediction of Drug-Likeness Using Deep Autoencoder Neural Networks
por: Hu, Qiwan, et al.
Publicado: (2018) -
Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
por: Marchi, Erik, et al.
Publicado: (2017) -
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022)