Cargando…
Analog monolayer SWCNTs-based memristive 2D structure for energy-efficient deep learning in spiking neural networks
Advances in materials science and memory devices work in tandem for the evolution of Artificial Intelligence systems. Energy-efficient computation is the ultimate goal of emerging memristor technology, in which the storage and computation can be done in the same memory crossbar. In this work, an ana...
Autores principales: | Abunahla, Heba, Abbas, Yawar, Gebregiorgis, Anteneh, Waheed, Waqas, Mohammad, Baker, Hamdioui, Said, Alazzam, Anas, Rezeq, Moh’d |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696067/ https://www.ncbi.nlm.nih.gov/pubmed/38049534 http://dx.doi.org/10.1038/s41598-023-48529-z |
Ejemplares similares
-
NeuroMem: Analog Graphene-Based Resistive Memory for Artificial Neural Networks
por: Abunahla, Heba, et al.
Publicado: (2020) -
Electric Field-Driven
Self-Assembly of Gold Nanoparticle
Monolayers on Silicon Substrates
por: Deader, Firdous Ahmad, et al.
Publicado: (2023) -
Micro-Pattern of Graphene Oxide Films Using Metal Bonding
por: Abunahla, Heba, et al.
Publicado: (2020) -
Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction
por: Abujabal, Muayad, et al.
Publicado: (2022) -
Nanojunction Material Effect on the Photoelectric
Response of Single-Wall Carbon Nanotube Rectennas
por: Tizani, Lina, et al.
Publicado: (2021)