Cargando…
An image deblurring method using improved U-Net model based on multilayer fusion and attention mechanism
The investigation of image deblurring techniques in dynamic scenes represents a prominent area of research. Recently, deep learning technology has gained extensive traction within the field of image deblurring methodologies. However, such methods often suffer from limited inherent interconnections a...
Autores principales: | Lian, Zuozheng, Wang, Haizhen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696086/ https://www.ncbi.nlm.nih.gov/pubmed/38049485 http://dx.doi.org/10.1038/s41598-023-47768-4 |
Ejemplares similares
-
WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image
por: Yun, Chaeyeong, et al.
Publicado: (2023) -
A Lightweight Fusion Distillation Network for Image Deblurring and Deraining †
por: Zhang, Yanni, et al.
Publicado: (2021) -
Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network
por: Zhou, Quan, et al.
Publicado: (2020) -
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture
por: Liu, Peng, et al.
Publicado: (2022)