Cargando…
A spatiotemporal XGBoost model for PM(2.5) concentration prediction and its application in Shanghai
This paper innovatively constructed an analytical and forecasting framework to predict PM(2.5) concentration levels for 16 municipal districts in Shanghai. By means of XGBoost parameters adjustment, empirical mode decomposition, and model fusion, improvements are made on XGBoost prediction accuracy...
Autores principales: | Wang, Zidong, Wu, Xianhua, Wu, You |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696222/ http://dx.doi.org/10.1016/j.heliyon.2023.e22569 |
Ejemplares similares
-
An Ensemble Spatiotemporal Model for Predicting PM(2.5) Concentrations
por: Li, Lianfa, et al.
Publicado: (2017) -
Spatiotemporal Variations of Indoor PM(2.5) Concentrations in Nanjing, China
por: Shao, Zhijuan, et al.
Publicado: (2019) -
Satellite-Based Spatiotemporal Trends in PM(2.5) Concentrations: China, 2004–2013
por: Ma, Zongwei, et al.
Publicado: (2015) -
Spatiotemporal Patterns of Ground Monitored PM(2.5) Concentrations in China in Recent Years
por: Li, Junming, et al.
Publicado: (2018) -
Spatial and temporal characteristics analysis and prediction model of PM(2.5) concentration based on SpatioTemporal-Informer model
por: Ma, Zhanfei, et al.
Publicado: (2023)