Cargando…

Shotgun Proteomic-Based Approach with a Q-Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometer for Protein Adductomics on a 3D Human Brain Tumor Neurospheroid Culture Model: The Identification of Adduct Formation in Calmodulin-Dependent Protein Kinase-2 and Annexin-A1 Induced by Pesticide Mixture

[Image: see text] Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as...

Descripción completa

Detalles Bibliográficos
Autores principales: Louati, Kaouthar, Maalej, Amina, Kolsi, Fatma, Kallel, Rim, Gdoura, Yassine, Borni, Mahdi, Hakim, Leila Sellami, Zribi, Rania, Choura, Sirine, Sayadi, Sami, Chamkha, Mohamed, Mnif, Basma, Khemakhem, Zouheir, Boudawara, Tahya Sellami, Boudawara, Mohamed Zaher, Safta, Fathi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696604/
https://www.ncbi.nlm.nih.gov/pubmed/37906427
http://dx.doi.org/10.1021/acs.jproteome.3c00484
Descripción
Sumario:[Image: see text] Pesticides are increasingly used in combinations in crop protection, resulting in enhanced toxicities for various organisms. Although protein adductomics is challenging, it remains a powerful bioanalytical tool to check environmental exposure and characterize xenobiotic adducts as putative toxicity biomarkers with high accuracy, facilitated by recent advances in proteomic methodologies and a mass spectrometry high-throughput technique. The present study aims to predict the potential neurotoxicity effect of imidacloprid and λ-cyhalothrin insecticides on human neural cells. Our protocol consisted first of 3D in vitro developing neurospheroids derived from human brain tumors and then treatment by pesticide mixture. Furthermore, we adopted a bottom-up proteomic-based approach using nanoflow ultraperformance liquid chromatography coupled with a high-resolution mass spectrometer for protein-adduct analysis with prediction of altered sites. Two proteins were selected, namely, calcium-calmodulin-dependent protein kinase-II (CaMK2) and annexin-A1 (ANXA1), as key targets endowed with primordial roles. De novo sequencing revealed several adduct formations in the active site of 82-ANXA1 and 228-CaMK2 as a result of neurotoxicity, predicted by the added mass shifts for the structure of electrophilic precursors. To the best of our knowledge, our study is the first to adopt a proteomic-based approach to investigate in depth pesticide molecular interactions and their potential to adduct proteins which play a crucial role in the neurotoxicity mechanism.