Cargando…
On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation
Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes ve...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696932/ http://dx.doi.org/10.1039/d3na00353a |
_version_ | 1785154677524922368 |
---|---|
author | Lacroce, Elisa Bianchi, Leonardo Polito, Laura Korganbayev, Sanzhar Molinelli, Alessandro Sacchetti, Alessandro Saccomandi, Paola Rossi, Filippo |
author_facet | Lacroce, Elisa Bianchi, Leonardo Polito, Laura Korganbayev, Sanzhar Molinelli, Alessandro Sacchetti, Alessandro Saccomandi, Paola Rossi, Filippo |
author_sort | Lacroce, Elisa |
collection | PubMed |
description | Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial–temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases. |
format | Online Article Text |
id | pubmed-10696932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-106969322023-12-06 On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation Lacroce, Elisa Bianchi, Leonardo Polito, Laura Korganbayev, Sanzhar Molinelli, Alessandro Sacchetti, Alessandro Saccomandi, Paola Rossi, Filippo Nanoscale Adv Chemistry Hydrogels are 3D cross-linked networks of polymeric chains designed to be used in the human body. Nowadays they find widespread applications in the biomedical field and are particularly attractive as drug delivery vectors. However, despite many good results, their release performance is sometimes very quick and uncontrolled, being forced by the high in vivo clearance of body fluids. In this direction, the development of novel responsive nanomaterials promises to overcome the drawbacks of common hydrogels, inducing responsive properties in three-dimensional polymeric devices. In this study, we synthesized and then loaded gold nanorods (Au NRs) within an agarose-carbomer (AC)-based hydrogel obtained from a microwave-assisted polycondensation reaction between carbomer 974P and agarose. The photothermal effect of the composite device was quantified in terms of maximum temperature and spatial–temporal temperature distribution, also during consecutive laser irradiations. This work shows that composite Au NRs loaded within AC hydrogels can serve as a stable photothermal treatment agent with enhanced photothermal efficiency and good thermal stability after consecutive laser irradiations. These results confirm that the composite system produced can exhibit an enhanced thermal effect under NIR laser irradiation, which is expected to lead to great therapeutic advantages for the localized treatment of different diseases. RSC 2023-08-28 /pmc/articles/PMC10696932/ http://dx.doi.org/10.1039/d3na00353a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Lacroce, Elisa Bianchi, Leonardo Polito, Laura Korganbayev, Sanzhar Molinelli, Alessandro Sacchetti, Alessandro Saccomandi, Paola Rossi, Filippo On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title | On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title_full | On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title_fullStr | On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title_full_unstemmed | On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title_short | On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation |
title_sort | on the role of polymeric hydrogels in the thermal response of gold nanorods under nir laser irradiation |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696932/ http://dx.doi.org/10.1039/d3na00353a |
work_keys_str_mv | AT lacroceelisa ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT bianchileonardo ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT politolaura ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT korganbayevsanzhar ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT molinellialessandro ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT sacchettialessandro ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT saccomandipaola ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation AT rossifilippo ontheroleofpolymerichydrogelsinthethermalresponseofgoldnanorodsundernirlaserirradiation |