Cargando…
Micapipe: A pipeline for multimodal neuroimaging and connectome analysis
Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing meth...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697132/ https://www.ncbi.nlm.nih.gov/pubmed/36070839 http://dx.doi.org/10.1016/j.neuroimage.2022.119612 |
_version_ | 1785153908026376192 |
---|---|
author | Cruces, Raúl R. Royer, Jessica Herholz, Peer Larivière, Sara Vos de Wael, Reinder Paquola, Casey Benkarim, Oualid Park, Bo-yong Degré-Pelletier, Janie Nelson, Mark C. DeKraker, Jordan Leppert, Ilana R. Tardif, Christine Poline, Jean-Baptiste Concha, Luis Bernhardt, Boris C. |
author_facet | Cruces, Raúl R. Royer, Jessica Herholz, Peer Larivière, Sara Vos de Wael, Reinder Paquola, Casey Benkarim, Oualid Park, Bo-yong Degré-Pelletier, Janie Nelson, Mark C. DeKraker, Jordan Leppert, Ilana R. Tardif, Christine Poline, Jean-Baptiste Concha, Luis Bernhardt, Boris C. |
author_sort | Cruces, Raúl R. |
collection | PubMed |
description | Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100–1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity. |
format | Online Article Text |
id | pubmed-10697132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-106971322023-12-05 Micapipe: A pipeline for multimodal neuroimaging and connectome analysis Cruces, Raúl R. Royer, Jessica Herholz, Peer Larivière, Sara Vos de Wael, Reinder Paquola, Casey Benkarim, Oualid Park, Bo-yong Degré-Pelletier, Janie Nelson, Mark C. DeKraker, Jordan Leppert, Ilana R. Tardif, Christine Poline, Jean-Baptiste Concha, Luis Bernhardt, Boris C. Neuroimage Article Multimodal magnetic resonance imaging (MRI) has accelerated human neuroscience by fostering the analysis of brain microstructure, geometry, function, and connectivity across multiple scales and in living brains. The richness and complexity of multimodal neuroimaging, however, demands processing methods to integrate information across modalities and to consolidate findings across different spatial scales. Here, we present micapipe an open processing pipeline for multimodal MRI datasets. Based on BIDS-conform input data, micapipe can generate i) structural connectomes derived from diffusion tractography, ii) functional connectomes derived from resting-state signal correlations, iii) geodesic distance matrices that quantify cortico-cortical proximity, and iv) microstructural profile covariance matrices that assess inter-regional similarity in cortical myelin proxies. The above matrices can be automatically generated across established 18 cortical parcellations (100–1000 parcels), in addition to subcortical and cerebellar parcellations, allowing researchers to replicate findings easily across different spatial scales. Results are represented on three different surface spaces (native, conte69, fsaverage5), and outputs are BIDS-conform. Processed outputs can be quality controlled at the individual and group level. micapipe was tested on several datasets and is available at https://github.com/MICA-MNI/micapipe, documented at https://micapipe.readthedocs.io/, and containerized as a BIDS App http://bids-apps.neuroimaging.io/apps/. We hope that micapipe will foster robust and integrative studies of human brain microstructure, morphology, function, cand connectivity. 2022-11 2022-09-05 /pmc/articles/PMC10697132/ /pubmed/36070839 http://dx.doi.org/10.1016/j.neuroimage.2022.119612 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ) |
spellingShingle | Article Cruces, Raúl R. Royer, Jessica Herholz, Peer Larivière, Sara Vos de Wael, Reinder Paquola, Casey Benkarim, Oualid Park, Bo-yong Degré-Pelletier, Janie Nelson, Mark C. DeKraker, Jordan Leppert, Ilana R. Tardif, Christine Poline, Jean-Baptiste Concha, Luis Bernhardt, Boris C. Micapipe: A pipeline for multimodal neuroimaging and connectome analysis |
title | Micapipe: A pipeline for multimodal neuroimaging and connectome
analysis |
title_full | Micapipe: A pipeline for multimodal neuroimaging and connectome
analysis |
title_fullStr | Micapipe: A pipeline for multimodal neuroimaging and connectome
analysis |
title_full_unstemmed | Micapipe: A pipeline for multimodal neuroimaging and connectome
analysis |
title_short | Micapipe: A pipeline for multimodal neuroimaging and connectome
analysis |
title_sort | micapipe: a pipeline for multimodal neuroimaging and connectome
analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697132/ https://www.ncbi.nlm.nih.gov/pubmed/36070839 http://dx.doi.org/10.1016/j.neuroimage.2022.119612 |
work_keys_str_mv | AT crucesraulr micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT royerjessica micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT herholzpeer micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT larivieresara micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT vosdewaelreinder micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT paquolacasey micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT benkarimoualid micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT parkboyong micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT degrepelletierjanie micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT nelsonmarkc micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT dekrakerjordan micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT leppertilanar micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT tardifchristine micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT polinejeanbaptiste micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT conchaluis micapipeapipelineformultimodalneuroimagingandconnectomeanalysis AT bernhardtborisc micapipeapipelineformultimodalneuroimagingandconnectomeanalysis |