Cargando…
Self-Supervised Learning-Based General Laboratory Progress Pretrained Model for Cardiovascular Event Detection
Objective: Leveraging patient data through machine learning techniques in disease care offers a multitude of substantial benefits. Nonetheless, the inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consiste...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697297/ http://dx.doi.org/10.1109/JTEHM.2023.3307794 |
Ejemplares similares
-
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
MAE-Based Self-Supervised Pretraining Algorithm for Heart Rate Estimation of Radar Signals
por: Xiang, Yashan, et al.
Publicado: (2023) -
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging
por: Shi, Chenwei, et al.
Publicado: (2023) -
Enhanced Tooth Region Detection Using Pretrained Deep Learning Models
por: Al-Sarem, Mohammed, et al.
Publicado: (2022) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022)