Cargando…

X-ray radio-enhancement by Ti(3)C(2)T(x) MXenes in soft tissue sarcoma

Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimmermann, Monika, Gerken, Lukas R. H., Wee, Shianlin, Kissling, Vera M., Neuer, Anna L., Tsolaki, Elena, Gogos, Alexander, Lukatskaya, Maria R., Herrmann, Inge K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697419/
https://www.ncbi.nlm.nih.gov/pubmed/37878039
http://dx.doi.org/10.1039/d3bm00607g
Descripción
Sumario:Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti(3)C(2)T(x) MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti(3)C(2)T(x) MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti(3)C(2)T(x) MXenes, marking them as a promising candidate for enhancing radiotherapy.