Cargando…
Joint analysis of multiple phenotypes for extremely unbalanced case–control association studies using multi-layer network
MOTIVATION: Genome-wide association studies is an essential tool for analyzing associations between phenotypes and single nucleotide polymorphisms (SNPs). Most of binary phenotypes in large biobanks are extremely unbalanced, which leads to inflated type I error rates for many widely used association...
Autores principales: | Xie, Hongjing, Cao, Xuewei, Zhang, Shuanglin, Sha, Qiuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697735/ https://www.ncbi.nlm.nih.gov/pubmed/37991852 http://dx.doi.org/10.1093/bioinformatics/btad707 |
Ejemplares similares
-
A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics
por: Wang, Meida, et al.
Publicado: (2023) -
Joint Analysis of Multiple Phenotypes in Association Studies based on Cross-Validation Prediction Error
por: Yang, Xinlan, et al.
Publicado: (2019) -
A computationally efficient clustering linear combination approach to jointly analyze multiple phenotypes for GWAS
por: Wang, Meida, et al.
Publicado: (2022) -
An Adaptive Fisher’s Combination Method for Joint Analysis of Multiple Phenotypes in Association Studies
por: Liang, Xiaoyu, et al.
Publicado: (2016) -
Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test
por: Wang, Zhenchuan, et al.
Publicado: (2016)