Cargando…
An ultrasensitive site-specific DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy
Site-specific exchange of genetic information is mediated by DNA recombinases, such as FLP or Cre, and has become a valuable tool in modern molecular biology. The so far low number of suitable recombinating enzymes has driven current research activities towards alteration of catalytic properties, su...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074182/ https://www.ncbi.nlm.nih.gov/pubmed/15802627 http://dx.doi.org/10.1093/nar/gni060 |
Sumario: | Site-specific exchange of genetic information is mediated by DNA recombinases, such as FLP or Cre, and has become a valuable tool in modern molecular biology. The so far low number of suitable recombinating enzymes has driven current research activities towards alteration of catalytic properties, such as thermostability or recognition sequences. However, identification and analysis of new mutants requires sensitive in vitro activity assays, which traditionally are based on gel electrophoresis. Here, we describe the development of a new sensitive DNA recombination assay based on dual-color fluorescence cross-correlation spectroscopy (DC-FCCS), which works in homogenous solution and does not require any separation step such as electrophoresis. The assay was validated with unlabeled FLP recombinase and different fluorescently labeled DNA substrates containing the FLP recognition target (FRT). This strategy fulfills all requirements for possible application in high throughput screening and engineering of new site-specific DNA recombinases starting from the FLP-FRT system, and is easily adjustable to other systems like Cre/loxP. |
---|