Cargando…
Retropseudogenes derived from the human Ro/SS-A autoantigen-associated hY RNAs
We report the characterization in the human genome of 966 pseudogenes derived from the four human Y (hY) RNAs, components of the Ro/SS-A autoantigen. About 95% of the Y RNA pseudogenes are found in corresponding locations on the chimpanzee and human chromosomes. On the contrary, Y pseudogenes in mic...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1074747/ https://www.ncbi.nlm.nih.gov/pubmed/15817567 http://dx.doi.org/10.1093/nar/gki504 |
Sumario: | We report the characterization in the human genome of 966 pseudogenes derived from the four human Y (hY) RNAs, components of the Ro/SS-A autoantigen. About 95% of the Y RNA pseudogenes are found in corresponding locations on the chimpanzee and human chromosomes. On the contrary, Y pseudogenes in mice are both infrequent and found in different genomic regions. In addition to this rodent/primate discrepancy, the conservation of hY pseudogenes relative to hY genes suggests that they occurred after rodent/primate divergence. Flanking regions of hY pseudogenes contain convincing evidence for involvement of the L1 retrotransposition machinery. Although Alu elements are found in close proximity to most hY pseudogenes, these are not chimeric retrogenes. Point mutations in hY RNA transcripts specifically affecting binding of Ro60 protein likely contributed to their selection for direct trans retrotransposition. This represents a novel requirement for the selection of specific RNAs for their genomic integration by the L1 retrotransposition machinery. Over 40% of the hY pseudogenes are found in intronic regions of protein-coding genes. Considering the functions of proteins known to bind subsets of hY RNAs, hY pseudogenes constitute a new class of L1-dependent non-autonomous retroelements, potentially involved in post-transcriptional regulation of gene expression. |
---|