Cargando…
Homology Induction: the use of machine learning to improve sequence similarity searches
BACKGROUND: The inference of homology between proteins is a key problem in molecular biology The current best approaches only identify ~50% of homologies (with a false positive rate set at 1/1000). RESULTS: We present Homology Induction (HI), a new approach to inferring homology. HI uses machine lea...
Autores principales: | Karwath, Andreas, King, Ross D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2002
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC107726/ https://www.ncbi.nlm.nih.gov/pubmed/11972320 http://dx.doi.org/10.1186/1471-2105-3-11 |
Ejemplares similares
-
Detecting false positive sequence homology: a machine learning approach
por: Fujimoto, M. Stanley, et al.
Publicado: (2016) -
Evading the annotation bottleneck: using sequence similarity to search non-sequence gene data
por: Gilchrist, Michael J, et al.
Publicado: (2008) -
An improved machine learning protocol for the identification of correct Sequest search results
por: Källberg, Morten, et al.
Publicado: (2010) -
Improved genomic prediction using machine learning with Variational Bayesian sparsity
por: Yan, Qingsen, et al.
Publicado: (2023) -
On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation
por: Wong, Wing-Cheong, et al.
Publicado: (2014)