Cargando…
Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks
BACKGROUND: Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as pro...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079807/ https://www.ncbi.nlm.nih.gov/pubmed/15777474 http://dx.doi.org/10.1186/1471-2148-5-23 |
_version_ | 1782123422840520704 |
---|---|
author | Agrafioti, Ino Swire, Jonathan Abbott, James Huntley, Derek Butcher, Sarah Stumpf, Michael PH |
author_facet | Agrafioti, Ino Swire, Jonathan Abbott, James Huntley, Derek Butcher, Sarah Stumpf, Michael PH |
author_sort | Agrafioti, Ino |
collection | PubMed |
description | BACKGROUND: Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. RESULTS: We compare the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans with those of closely related species to elucidate the recent evolutionary history of their respective protein interaction networks. Interaction and expression data are studied in the light of a detailed phylogenetic analysis. The underlying network structure is incorporated explicitly into the statistical analysis. The increased phylogenetic resolution, paired with high-quality interaction data, allows us to resolve the way in which protein interaction network structure and abundance of proteins affect the evolutionary rate. We find that expression levels are better predictors of the evolutionary rate than a protein's connectivity. Detailed analysis of the two organisms also shows that the evolutionary rates of interacting proteins are not sufficiently similar to be mutually predictive. CONCLUSION: It appears that meaningful inferences about the evolution of protein interaction networks require comparative analysis of reasonably closely related species. The signature of protein evolution is shaped by a protein's abundance in the organism and its function and the biological process it is involved in. Its position in the interaction networks and its connectivity may modulate this but they appear to have only minor influence on a protein's evolutionary rate. |
format | Text |
id | pubmed-1079807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-10798072005-04-15 Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks Agrafioti, Ino Swire, Jonathan Abbott, James Huntley, Derek Butcher, Sarah Stumpf, Michael PH BMC Evol Biol Research Article BACKGROUND: Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. RESULTS: We compare the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans with those of closely related species to elucidate the recent evolutionary history of their respective protein interaction networks. Interaction and expression data are studied in the light of a detailed phylogenetic analysis. The underlying network structure is incorporated explicitly into the statistical analysis. The increased phylogenetic resolution, paired with high-quality interaction data, allows us to resolve the way in which protein interaction network structure and abundance of proteins affect the evolutionary rate. We find that expression levels are better predictors of the evolutionary rate than a protein's connectivity. Detailed analysis of the two organisms also shows that the evolutionary rates of interacting proteins are not sufficiently similar to be mutually predictive. CONCLUSION: It appears that meaningful inferences about the evolution of protein interaction networks require comparative analysis of reasonably closely related species. The signature of protein evolution is shaped by a protein's abundance in the organism and its function and the biological process it is involved in. Its position in the interaction networks and its connectivity may modulate this but they appear to have only minor influence on a protein's evolutionary rate. BioMed Central 2005-03-18 /pmc/articles/PMC1079807/ /pubmed/15777474 http://dx.doi.org/10.1186/1471-2148-5-23 Text en Copyright © 2005 Agrafioti et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Agrafioti, Ino Swire, Jonathan Abbott, James Huntley, Derek Butcher, Sarah Stumpf, Michael PH Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title | Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title_full | Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title_fullStr | Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title_full_unstemmed | Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title_short | Comparative analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans protein interaction networks |
title_sort | comparative analysis of the saccharomyces cerevisiae and caenorhabditis elegans protein interaction networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1079807/ https://www.ncbi.nlm.nih.gov/pubmed/15777474 http://dx.doi.org/10.1186/1471-2148-5-23 |
work_keys_str_mv | AT agrafiotiino comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks AT swirejonathan comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks AT abbottjames comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks AT huntleyderek comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks AT butchersarah comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks AT stumpfmichaelph comparativeanalysisofthesaccharomycescerevisiaeandcaenorhabditiselegansproteininteractionnetworks |