Cargando…
Floral gene resources from basal angiosperms for comparative genomics research
BACKGROUND: The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutiona...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083416/ https://www.ncbi.nlm.nih.gov/pubmed/15799777 http://dx.doi.org/10.1186/1471-2229-5-5 |
_version_ | 1782123784551006208 |
---|---|
author | Albert, Victor A Soltis, Douglas E Carlson, John E Farmerie, William G Wall, P Kerr Ilut, Daniel C Solow, Teri M Mueller, Lukas A Landherr, Lena L Hu, Yi Buzgo, Matyas Kim, Sangtae Yoo, Mi-Jeong Frohlich, Michael W Perl-Treves, Rafael Schlarbaum, Scott E Bliss, Barbara J Zhang, Xiaohong Tanksley, Steven D Oppenheimer, David G Soltis, Pamela S Ma, Hong dePamphilis, Claude W Leebens-Mack, James H |
author_facet | Albert, Victor A Soltis, Douglas E Carlson, John E Farmerie, William G Wall, P Kerr Ilut, Daniel C Solow, Teri M Mueller, Lukas A Landherr, Lena L Hu, Yi Buzgo, Matyas Kim, Sangtae Yoo, Mi-Jeong Frohlich, Michael W Perl-Treves, Rafael Schlarbaum, Scott E Bliss, Barbara J Zhang, Xiaohong Tanksley, Steven D Oppenheimer, David G Soltis, Pamela S Ma, Hong dePamphilis, Claude W Leebens-Mack, James H |
author_sort | Albert, Victor A |
collection | PubMed |
description | BACKGROUND: The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. RESULTS: Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. CONCLUSION: Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. |
format | Text |
id | pubmed-1083416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-10834162005-04-21 Floral gene resources from basal angiosperms for comparative genomics research Albert, Victor A Soltis, Douglas E Carlson, John E Farmerie, William G Wall, P Kerr Ilut, Daniel C Solow, Teri M Mueller, Lukas A Landherr, Lena L Hu, Yi Buzgo, Matyas Kim, Sangtae Yoo, Mi-Jeong Frohlich, Michael W Perl-Treves, Rafael Schlarbaum, Scott E Bliss, Barbara J Zhang, Xiaohong Tanksley, Steven D Oppenheimer, David G Soltis, Pamela S Ma, Hong dePamphilis, Claude W Leebens-Mack, James H BMC Plant Biol Database BACKGROUND: The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. RESULTS: Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. CONCLUSION: Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. BioMed Central 2005-03-30 /pmc/articles/PMC1083416/ /pubmed/15799777 http://dx.doi.org/10.1186/1471-2229-5-5 Text en Copyright © 2005 Albert et al; licensee BioMed Central Ltd. |
spellingShingle | Database Albert, Victor A Soltis, Douglas E Carlson, John E Farmerie, William G Wall, P Kerr Ilut, Daniel C Solow, Teri M Mueller, Lukas A Landherr, Lena L Hu, Yi Buzgo, Matyas Kim, Sangtae Yoo, Mi-Jeong Frohlich, Michael W Perl-Treves, Rafael Schlarbaum, Scott E Bliss, Barbara J Zhang, Xiaohong Tanksley, Steven D Oppenheimer, David G Soltis, Pamela S Ma, Hong dePamphilis, Claude W Leebens-Mack, James H Floral gene resources from basal angiosperms for comparative genomics research |
title | Floral gene resources from basal angiosperms for comparative genomics research |
title_full | Floral gene resources from basal angiosperms for comparative genomics research |
title_fullStr | Floral gene resources from basal angiosperms for comparative genomics research |
title_full_unstemmed | Floral gene resources from basal angiosperms for comparative genomics research |
title_short | Floral gene resources from basal angiosperms for comparative genomics research |
title_sort | floral gene resources from basal angiosperms for comparative genomics research |
topic | Database |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083416/ https://www.ncbi.nlm.nih.gov/pubmed/15799777 http://dx.doi.org/10.1186/1471-2229-5-5 |
work_keys_str_mv | AT albertvictora floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT soltisdouglase floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT carlsonjohne floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT farmeriewilliamg floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT wallpkerr floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT ilutdanielc floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT solowterim floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT muellerlukasa floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT landherrlenal floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT huyi floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT buzgomatyas floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT kimsangtae floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT yoomijeong floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT frohlichmichaelw floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT perltrevesrafael floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT schlarbaumscotte floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT blissbarbaraj floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT zhangxiaohong floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT tanksleystevend floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT oppenheimerdavidg floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT soltispamelas floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT mahong floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT depamphilisclaudew floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch AT leebensmackjamesh floralgeneresourcesfrombasalangiospermsforcomparativegenomicsresearch |