Cargando…
An Entropy-based gene selection method for cancer classification using microarray data
BACKGROUND: Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult. The selected gene set should be small enough to allow diagnosis even in reg...
Autores principales: | Liu, Xiaoxing, Krishnan, Arun, Mondry, Adrian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087831/ https://www.ncbi.nlm.nih.gov/pubmed/15790388 http://dx.doi.org/10.1186/1471-2105-6-76 |
Ejemplares similares
-
Entropy based sub-dimensional evaluation and selection method for DNA microarray data classification
por: Wang, Yi, et al.
Publicado: (2008) -
Entropy-based gene ranking without selection bias for the predictive classification of microarray data
por: Furlanello, Cesare, et al.
Publicado: (2003) -
Classification of heterogeneous microarray data by maximum entropy kernel
por: Fujibuchi, Wataru, et al.
Publicado: (2007) -
A Robust Gene Selection Method for Microarray-based Cancer Classification
por: Wang, Xiaosheng, et al.
Publicado: (2010) -
Gene selection for classification of microarray data based on the Bayes error
por: Zhang, Ji-Gang, et al.
Publicado: (2007)