Cargando…
Crosstalk regulation among group 2- Sigma factors in Synechocystis PCC6803
BACKGROUND: The cyanobacterium Synechocystis PCC6803 contains one group 1 (sigA) and four group 2 (sigB, sigC, sigD and sigE) sigma factors. The activity of these multiple sigma factors determines the transcriptional program of this bacterium. We wanted to study the role of the group 2 sigma factors...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087845/ https://www.ncbi.nlm.nih.gov/pubmed/15847688 http://dx.doi.org/10.1186/1471-2180-5-18 |
Sumario: | BACKGROUND: The cyanobacterium Synechocystis PCC6803 contains one group 1 (sigA) and four group 2 (sigB, sigC, sigD and sigE) sigma factors. The activity of these multiple sigma factors determines the transcriptional program of this bacterium. We wanted to study the role of the group 2 sigma factors in Synechocystis. We have therefore constructed mutants of each of the group 2 sigma factors and investigated their crosstalk. RESULTS: We used quantitative RT-PCR analysis to measure the relative abundance of the sig mRNAs in the four sigma mutants. Our data indicate that a network of mutual transcriptional regulation links the expression of the sigma genes. Accordingly, an environmental stress acting on only one of the sigma factors will indirectly modify the expression of most of the other sigma factors. This was confirmed by the transcriptional analysis of the sig mRNAs as a function of nitrogen starvation. CONCLUSION: Taken together, our observations suggest that the crosstalk regulation between all group 1 and group 2 genes could be important for the adaptation of the bacterium to different environmental and physiological conditions. |
---|