Cargando…
Can pulsed ultrasound increase tissue damage during ischemia? A study of the effects of ultrasound on infarcted and non-infarcted myocardium in anesthetized pigs
BACKGROUND: The same mechanisms by which ultrasound enhances thrombolysis are described in connection with non-beneficial effects of ultrasound. The present safety study was therefore designed to explore effects of beneficial ultrasound characteristics on the infarcted and non-infarcted myocardium....
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1090565/ https://www.ncbi.nlm.nih.gov/pubmed/15831106 http://dx.doi.org/10.1186/1471-2261-5-8 |
Sumario: | BACKGROUND: The same mechanisms by which ultrasound enhances thrombolysis are described in connection with non-beneficial effects of ultrasound. The present safety study was therefore designed to explore effects of beneficial ultrasound characteristics on the infarcted and non-infarcted myocardium. METHODS: In an open chest porcine model (n = 17), myocardial infarction was induced by ligating a coronary diagonal branch. Pulsed ultrasound of frequency 1 MHz and intensity 0.1 W/cm(2 )(I(SATA)) was applied during one hour to both infarcted and non-infarcted myocardial tissue. These ultrasound characteristics are similar to those used in studies of ultrasound enhanced thrombolysis. Using blinded assessment technique, myocardial damage was rated according to histopathological criteria. RESULTS: Infarcted myocardium exhibited a significant increase in damage score compared to non-infarcted myocardium: 6.2 ± 2.0 vs. 4.3 ± 1.5 (mean ± standard deviation), (p = 0.004). In the infarcted myocardium, ultrasound exposure yielded a further significant increase of damage scores: 8.1 ± 1.7 vs. 6.2 ± 2.0 (p = 0.027). CONCLUSION: Our results suggest an instantaneous additive effect on the ischemic damage in myocardial tissue when exposed to ultrasound of stated characteristics. The ultimate damage degree remains to be clarified. |
---|