Cargando…
A mathematical and computational framework for quantitative comparison and integration of large-scale gene expression data
Analysis of large-scale gene expression studies usually begins with gene clustering. A ubiquitous problem is that different algorithms applied to the same data inevitably give different results, and the differences are often substantial, involving a quarter or more of the genes analyzed. This raises...
Autores principales: | Hart, Christopher E., Sharenbroich, Lucas, Bornstein, Benjamin J., Trout, Diane, King, Brandon, Mjolsness, Eric, Wold, Barbara J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1092273/ https://www.ncbi.nlm.nih.gov/pubmed/15886390 http://dx.doi.org/10.1093/nar/gki536 |
Ejemplares similares
-
Connectivity in the Yeast Cell Cycle Transcription Network: Inferences from Neural Networks
por: Hart, Christopher E, et al.
Publicado: (2006) -
Mining gene expression data by interpreting principal components
por: Roden, Joseph C, et al.
Publicado: (2006) -
Prospects for Declarative Mathematical Modeling of Complex Biological Systems
por: Mjolsness, Eric
Publicado: (2019) -
A computational framework to explore large-scale biosynthetic diversity
por: Navarro-Muñoz, Jorge C., et al.
Publicado: (2019) -
Graph diffusion distance: Properties and efficient computation
por: Scott, C. B., et al.
Publicado: (2021)