Cargando…
Improved profile HMM performance by assessment of critical algorithmic features in SAM and HMMER
BACKGROUND: Profile hidden Markov model (HMM) techniques are among the most powerful methods for protein homology detection. Yet, the critical features for successful modelling are not fully known. In the present work we approached this by using two of the most popular HMM packages: SAM and HMMER. T...
Autores principales: | Wistrand, Markus, Sonnhammer, Erik LL |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1097716/ https://www.ncbi.nlm.nih.gov/pubmed/15831105 http://dx.doi.org/10.1186/1471-2105-6-99 |
Ejemplares similares
-
HMM-ModE: implementation, benchmarking and validation with HMMER3
por: Sinha, Swati, et al.
Publicado: (2014) -
PyHMMER: a Python library binding to HMMER for efficient sequence analysis
por: Larralde, Martin, et al.
Publicado: (2023) -
SAM-T08, HMM-based protein structure prediction
por: Karplus, Kevin
Publicado: (2009) -
xHMMER3x2: Utilizing HMMER3’s speed and HMMER2’s sensitivity and specificity in the glocal alignment mode for improved large-scale protein domain annotation
por: Yap, Choon-Kong, et al.
Publicado: (2016) -
dissectHMMER: a HMMER-based score dissection framework that statistically evaluates fold-critical sequence segments for domain fold similarity
por: Wong, Wing-Cheong, et al.
Publicado: (2015)