Cargando…

Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T

BACKGROUND: Cardiac hypertrophy is a major risk factor for morbidity and mortality in a number of cardiovascular diseases. Consequently, the signaling pathways that inhibit cardiac hypertrophy are currently receiving much interest. Among them, nitric oxide (NO), signaling via cGMP and cGMP-dependent...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Madiha AH, Ketat, Amal F
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131906/
https://www.ncbi.nlm.nih.gov/pubmed/15813973
http://dx.doi.org/10.1186/1471-2210-5-10
_version_ 1782123956262666240
author Hassan, Madiha AH
Ketat, Amal F
author_facet Hassan, Madiha AH
Ketat, Amal F
author_sort Hassan, Madiha AH
collection PubMed
description BACKGROUND: Cardiac hypertrophy is a major risk factor for morbidity and mortality in a number of cardiovascular diseases. Consequently, the signaling pathways that inhibit cardiac hypertrophy are currently receiving much interest. Among them, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase I, has been recognized as a negative regulator of cardiac hypertrophy. The present study investigated the in-vivo effect of sildenafil as a phosphodiestrase-5A (PDE-5A) inhibitor on the hypertrophic response of rat heart to isoproterenol and the relation of this effect to the level of myocardial cGMP and integrity of the constitutive nitric oxide synthase (cNOS) activity. RESULTS: The results showed that daily intraperitoneal administration of sildenafil per se for 10 days was without noticeable adverse effects on survival or myocardium. Conversely, daily subcutaneous administration of isoproterenol for 10 days caused significant myocardial hypertrophy, cell injury and decline in survival. When sildenafil was injected daily, one hour before isoproterenol, survival was significantly improved and the myocardium didn't show significant hypertrophy or cell injury. Interestingly, sildenafil was accompanied by significant rise in myocardial cGMP level, a parameter which was found in the present study to possess a significant negative correlation with cardiac hypertrophy and leak of cardiac troponin T into serum. At the same time, cGMP was found to possess a positive correlation with myocardial creatine kinase activity that reflects the efficiency of the energy utilization processes in the myocardium. However, in rats given N(ω)-nitro-L-arginine (L-NNA) as a competitive inhibitor of cNOS, sildenafil failed to show any favorable effect on survival or the myocardial injury parameters used to assess isoproterenol-induced injury. CONCLUSION: The present study suggests that increased cardiac cGMP level by sildenafil have a cardioprotective effect probably through acting as a post-receptor negative regulator of cardiac sympathetic responsiveness. Integrity of NOS function was an essential prerequisite for sildenafil's mediated cardioprotection encountered in the present study.
format Text
id pubmed-1131906
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-11319062005-05-20 Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T Hassan, Madiha AH Ketat, Amal F BMC Pharmacol Research Article BACKGROUND: Cardiac hypertrophy is a major risk factor for morbidity and mortality in a number of cardiovascular diseases. Consequently, the signaling pathways that inhibit cardiac hypertrophy are currently receiving much interest. Among them, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase I, has been recognized as a negative regulator of cardiac hypertrophy. The present study investigated the in-vivo effect of sildenafil as a phosphodiestrase-5A (PDE-5A) inhibitor on the hypertrophic response of rat heart to isoproterenol and the relation of this effect to the level of myocardial cGMP and integrity of the constitutive nitric oxide synthase (cNOS) activity. RESULTS: The results showed that daily intraperitoneal administration of sildenafil per se for 10 days was without noticeable adverse effects on survival or myocardium. Conversely, daily subcutaneous administration of isoproterenol for 10 days caused significant myocardial hypertrophy, cell injury and decline in survival. When sildenafil was injected daily, one hour before isoproterenol, survival was significantly improved and the myocardium didn't show significant hypertrophy or cell injury. Interestingly, sildenafil was accompanied by significant rise in myocardial cGMP level, a parameter which was found in the present study to possess a significant negative correlation with cardiac hypertrophy and leak of cardiac troponin T into serum. At the same time, cGMP was found to possess a positive correlation with myocardial creatine kinase activity that reflects the efficiency of the energy utilization processes in the myocardium. However, in rats given N(ω)-nitro-L-arginine (L-NNA) as a competitive inhibitor of cNOS, sildenafil failed to show any favorable effect on survival or the myocardial injury parameters used to assess isoproterenol-induced injury. CONCLUSION: The present study suggests that increased cardiac cGMP level by sildenafil have a cardioprotective effect probably through acting as a post-receptor negative regulator of cardiac sympathetic responsiveness. Integrity of NOS function was an essential prerequisite for sildenafil's mediated cardioprotection encountered in the present study. BioMed Central 2005-04-06 /pmc/articles/PMC1131906/ /pubmed/15813973 http://dx.doi.org/10.1186/1471-2210-5-10 Text en Copyright © 2005 Hassan and Ketat; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Hassan, Madiha AH
Ketat, Amal F
Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title_full Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title_fullStr Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title_full_unstemmed Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title_short Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T
title_sort sildenafil citrate increases myocardial cgmp content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin t
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1131906/
https://www.ncbi.nlm.nih.gov/pubmed/15813973
http://dx.doi.org/10.1186/1471-2210-5-10
work_keys_str_mv AT hassanmadihaah sildenafilcitrateincreasesmyocardialcgmpcontentinratheartdecreasesitshypertrophicresponsetoisoproterenolanddecreasesmyocardialleakofcreatinekinaseandtroponint
AT ketatamalf sildenafilcitrateincreasesmyocardialcgmpcontentinratheartdecreasesitshypertrophicresponsetoisoproterenolanddecreasesmyocardialleakofcreatinekinaseandtroponint