Cargando…
Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition
BACKGROUND: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed....
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142344/ https://www.ncbi.nlm.nih.gov/pubmed/15882454 http://dx.doi.org/10.1186/1742-4682-2-18 |
_version_ | 1782124281580224512 |
---|---|
author | Nakayama, Yoichi Kinoshita, Ayako Tomita, Masaru |
author_facet | Nakayama, Yoichi Kinoshita, Ayako Tomita, Masaru |
author_sort | Nakayama, Yoichi |
collection | PubMed |
description | BACKGROUND: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. RESULTS: Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. CONCLUSION: The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency. |
format | Text |
id | pubmed-1142344 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-11423442005-06-03 Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition Nakayama, Yoichi Kinoshita, Ayako Tomita, Masaru Theor Biol Med Model Research BACKGROUND: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. RESULTS: Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. CONCLUSION: The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency. BioMed Central 2005-05-09 /pmc/articles/PMC1142344/ /pubmed/15882454 http://dx.doi.org/10.1186/1742-4682-2-18 Text en Copyright © 2005 Nakayama et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Nakayama, Yoichi Kinoshita, Ayako Tomita, Masaru Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title | Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title_full | Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title_fullStr | Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title_full_unstemmed | Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title_short | Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
title_sort | dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1142344/ https://www.ncbi.nlm.nih.gov/pubmed/15882454 http://dx.doi.org/10.1186/1742-4682-2-18 |
work_keys_str_mv | AT nakayamayoichi dynamicsimulationofredbloodcellmetabolismanditsapplicationtotheanalysisofapathologicalcondition AT kinoshitaayako dynamicsimulationofredbloodcellmetabolismanditsapplicationtotheanalysisofapathologicalcondition AT tomitamasaru dynamicsimulationofredbloodcellmetabolismanditsapplicationtotheanalysisofapathologicalcondition |