Cargando…

A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae

A semi-quantitative real-time RT–PCR assay was designed to measure gonococcal pilin antigenicvariation (SQ-PCR Av assay). This assay employs 17 hybridization probe sets that quantitate subpopulations of pilin transcripts carrying different silent pilin copy sequences and one set that detects total p...

Descripción completa

Detalles Bibliográficos
Autores principales: Rohrer, Melissa S., Lazio, Matthew P., Seifert, H. Steven
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148172/
https://www.ncbi.nlm.nih.gov/pubmed/15947134
http://dx.doi.org/10.1093/nar/gki650
_version_ 1782124306206031872
author Rohrer, Melissa S.
Lazio, Matthew P.
Seifert, H. Steven
author_facet Rohrer, Melissa S.
Lazio, Matthew P.
Seifert, H. Steven
author_sort Rohrer, Melissa S.
collection PubMed
description A semi-quantitative real-time RT–PCR assay was designed to measure gonococcal pilin antigenicvariation (SQ-PCR Av assay). This assay employs 17 hybridization probe sets that quantitate subpopulations of pilin transcripts carrying different silent pilin copy sequences and one set that detects total pilE transcript levels. Mixtures of a DNA standard carrying the silent copy being detected and a clone encoding the starting pilE sequence, which is the majority pilE template, provided amplification curves that closely matched the experimental data and allowed an analysis of the contribution of different silent pilin copies to variation. The SQ-PCR Av assay was verified using DNA sequence analysis to demonstrate that this methodology allowed an accurate analysis of pilin variation. Both assays showed that with a specific starting pilE sequence, only a subset of the silent pilin copies recombine into pilE at a detectable level, and that this limited subset was reproducibly detected in replicate cultures. When an isogenic pilE sequence variant was examined using both assays, a new subset of silent copy sequences were detected recombining into pilE and the overall frequency of variation was increased. Thus, the parental pilE sequence influences the frequency of variation and the repertoire of pilin variants produced.
format Text
id pubmed-1148172
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-11481722005-06-10 A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae Rohrer, Melissa S. Lazio, Matthew P. Seifert, H. Steven Nucleic Acids Res Article A semi-quantitative real-time RT–PCR assay was designed to measure gonococcal pilin antigenicvariation (SQ-PCR Av assay). This assay employs 17 hybridization probe sets that quantitate subpopulations of pilin transcripts carrying different silent pilin copy sequences and one set that detects total pilE transcript levels. Mixtures of a DNA standard carrying the silent copy being detected and a clone encoding the starting pilE sequence, which is the majority pilE template, provided amplification curves that closely matched the experimental data and allowed an analysis of the contribution of different silent pilin copies to variation. The SQ-PCR Av assay was verified using DNA sequence analysis to demonstrate that this methodology allowed an accurate analysis of pilin variation. Both assays showed that with a specific starting pilE sequence, only a subset of the silent pilin copies recombine into pilE at a detectable level, and that this limited subset was reproducibly detected in replicate cultures. When an isogenic pilE sequence variant was examined using both assays, a new subset of silent copy sequences were detected recombining into pilE and the overall frequency of variation was increased. Thus, the parental pilE sequence influences the frequency of variation and the repertoire of pilin variants produced. Oxford University Press 2005 2005-06-09 /pmc/articles/PMC1148172/ /pubmed/15947134 http://dx.doi.org/10.1093/nar/gki650 Text en © The Author 2005. Published by Oxford University Press. All rights reserved
spellingShingle Article
Rohrer, Melissa S.
Lazio, Matthew P.
Seifert, H. Steven
A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title_full A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title_fullStr A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title_full_unstemmed A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title_short A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae
title_sort real-time semi-quantitative rt–pcr assay demonstrates that the pile sequence dictates the frequency and characteristics of pilin antigenic variation in neisseria gonorrhoeae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148172/
https://www.ncbi.nlm.nih.gov/pubmed/15947134
http://dx.doi.org/10.1093/nar/gki650
work_keys_str_mv AT rohrermelissas arealtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae
AT laziomatthewp arealtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae
AT seiferthsteven arealtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae
AT rohrermelissas realtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae
AT laziomatthewp realtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae
AT seiferthsteven realtimesemiquantitativertpcrassaydemonstratesthatthepilesequencedictatesthefrequencyandcharacteristicsofpilinantigenicvariationinneisseriagonorrhoeae