Cargando…
Visualization methods for statistical analysis of microarray clusters
BACKGROUND: The most common method of identifying groups of functionally related genes in microarray data is to apply a clustering algorithm. However, it is impossible to determine which clustering algorithm is most appropriate to apply, and it is difficult to verify the results of any algorithm due...
Autores principales: | Hibbs, Matthew A, Dirksen, Nathaniel C, Li, Kai, Troyanskaya, Olga G |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156867/ https://www.ncbi.nlm.nih.gov/pubmed/15890080 http://dx.doi.org/10.1186/1471-2105-6-115 |
Ejemplares similares
-
Visualizing statistical significance of disease clusters using cartograms
por: Kronenfeld, Barry J., et al.
Publicado: (2017) -
Statistical significance for hierarchical clustering in genetic association and microarray expression studies
por: Levenstien, Mark A, et al.
Publicado: (2003) -
Visualization-based discovery and analysis of genomic aberrations in microarray data
por: Myers, Chad L, et al.
Publicado: (2005) -
Ranking analysis of F-statistics for microarray data
por: Tan, Yuan-De, et al.
Publicado: (2008) -
FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data
por: Fu, Limin, et al.
Publicado: (2007)