Cargando…
The effects of normalization on the correlation structure of microarray data
BACKGROUND: Stochastic dependence between gene expression levels in microarray data is of critical importance for the methods of statistical inference that resort to pooling test-statistics across genes. It is frequently assumed that dependence between genes (or tests) is suffciently weak to justify...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156869/ https://www.ncbi.nlm.nih.gov/pubmed/15904488 http://dx.doi.org/10.1186/1471-2105-6-120 |
_version_ | 1782124322003877888 |
---|---|
author | Qiu, Xing Brooks, Andrew I Klebanov, Lev Yakovlev, Andrei |
author_facet | Qiu, Xing Brooks, Andrew I Klebanov, Lev Yakovlev, Andrei |
author_sort | Qiu, Xing |
collection | PubMed |
description | BACKGROUND: Stochastic dependence between gene expression levels in microarray data is of critical importance for the methods of statistical inference that resort to pooling test-statistics across genes. It is frequently assumed that dependence between genes (or tests) is suffciently weak to justify the proposed methods of testing for differentially expressed genes. A potential impact of between-gene correlations on the performance of such methods has yet to be explored. RESULTS: The paper presents a systematic study of correlation between the t-statistics associated with different genes. We report the effects of four different normalization methods using a large set of microarray data on childhood leukemia in addition to several sets of simulated data. Our findings help decipher the correlation structure of microarray data before and after the application of normalization procedures. CONCLUSION: A long-range correlation in microarray data manifests itself in thousands of genes that are heavily correlated with a given gene in terms of the associated t-statistics. By using normalization methods it is possible to significantly reduce correlation between the t-statistics computed for different genes. Normalization procedures affect both the true correlation, stemming from gene interactions, and the spurious correlation induced by random noise. When analyzing real world biological data sets, normalization procedures are unable to completely remove correlation between the test statistics. The long-range correlation structure also persists in normalized data. |
format | Text |
id | pubmed-1156869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-11568692005-06-22 The effects of normalization on the correlation structure of microarray data Qiu, Xing Brooks, Andrew I Klebanov, Lev Yakovlev, Andrei BMC Bioinformatics Methodology Article BACKGROUND: Stochastic dependence between gene expression levels in microarray data is of critical importance for the methods of statistical inference that resort to pooling test-statistics across genes. It is frequently assumed that dependence between genes (or tests) is suffciently weak to justify the proposed methods of testing for differentially expressed genes. A potential impact of between-gene correlations on the performance of such methods has yet to be explored. RESULTS: The paper presents a systematic study of correlation between the t-statistics associated with different genes. We report the effects of four different normalization methods using a large set of microarray data on childhood leukemia in addition to several sets of simulated data. Our findings help decipher the correlation structure of microarray data before and after the application of normalization procedures. CONCLUSION: A long-range correlation in microarray data manifests itself in thousands of genes that are heavily correlated with a given gene in terms of the associated t-statistics. By using normalization methods it is possible to significantly reduce correlation between the t-statistics computed for different genes. Normalization procedures affect both the true correlation, stemming from gene interactions, and the spurious correlation induced by random noise. When analyzing real world biological data sets, normalization procedures are unable to completely remove correlation between the test statistics. The long-range correlation structure also persists in normalized data. BioMed Central 2005-05-16 /pmc/articles/PMC1156869/ /pubmed/15904488 http://dx.doi.org/10.1186/1471-2105-6-120 Text en Copyright © 2005 Qiu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Qiu, Xing Brooks, Andrew I Klebanov, Lev Yakovlev, Andrei The effects of normalization on the correlation structure of microarray data |
title | The effects of normalization on the correlation structure of microarray data |
title_full | The effects of normalization on the correlation structure of microarray data |
title_fullStr | The effects of normalization on the correlation structure of microarray data |
title_full_unstemmed | The effects of normalization on the correlation structure of microarray data |
title_short | The effects of normalization on the correlation structure of microarray data |
title_sort | effects of normalization on the correlation structure of microarray data |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156869/ https://www.ncbi.nlm.nih.gov/pubmed/15904488 http://dx.doi.org/10.1186/1471-2105-6-120 |
work_keys_str_mv | AT qiuxing theeffectsofnormalizationonthecorrelationstructureofmicroarraydata AT brooksandrewi theeffectsofnormalizationonthecorrelationstructureofmicroarraydata AT klebanovlev theeffectsofnormalizationonthecorrelationstructureofmicroarraydata AT yakovlevandrei theeffectsofnormalizationonthecorrelationstructureofmicroarraydata AT qiuxing effectsofnormalizationonthecorrelationstructureofmicroarraydata AT brooksandrewi effectsofnormalizationonthecorrelationstructureofmicroarraydata AT klebanovlev effectsofnormalizationonthecorrelationstructureofmicroarraydata AT yakovlevandrei effectsofnormalizationonthecorrelationstructureofmicroarraydata |