Cargando…

The 5′-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf

The Maf family of proteins are a subgroup of basic region-leucine zipper (bZIP) transcription factors, which recognize a long palindromic DNA sequence [TGCTGAC(G)TCAGCA] known as the Maf recognition element (MARE). Interestingly, the functional target enhancer sequences present in the αA-crystallin...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshida, Tomonori, Ohkumo, Tsuyoshi, Ishibashi, Shoko, Yasuda, Kunio
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1156962/
https://www.ncbi.nlm.nih.gov/pubmed/15972792
http://dx.doi.org/10.1093/nar/gki653
Descripción
Sumario:The Maf family of proteins are a subgroup of basic region-leucine zipper (bZIP) transcription factors, which recognize a long palindromic DNA sequence [TGCTGAC(G)TCAGCA] known as the Maf recognition element (MARE). Interestingly, the functional target enhancer sequences present in the αA-crystallin gene contain a well-conserved half-site of MARE rather than the entire palindromic sequence. To resolve how Maf proteins bind to target sequences containing only MARE half-sites, we examined their binding activities using electrophoretic gel mobility shift assays as well as in vitro and in vivo reporter assays. Our results indicate that the 5′-flanking region of the MARE half-site is required for Maf proteins to bind both in vitro and in vivo. The critical 5′-flanking sequences for c-Maf were determined by a selection and amplification binding assay and show a preference for AT-rich nucleotides. Furthermore, sequence analysis of the regulatory regions of several target genes also suggests that AT-rich sequences are important. We conclude that Maf can bind to at least two types of target sequences, the classical MARE (palindrome type) and a 5′-AT-rich MARE half-site (half-site type). Our results provide important new insights into the DNA binding and site selection by bZIP transcription factors.