Cargando…

Estrogen-Astrocyte interactions: Implications for neuroprotection

BACKGROUND: Recent work has suggested that the ovarian steroid 17β-estradiol, at physiological concentrations, may exert protective effects in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and acute ischemic stroke. While physiological concentrations of estro...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhandapani, Krishnan M, Brann, Darrell W
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116596/
https://www.ncbi.nlm.nih.gov/pubmed/12067420
http://dx.doi.org/10.1186/1471-2202-3-6
_version_ 1782120265249980416
author Dhandapani, Krishnan M
Brann, Darrell W
author_facet Dhandapani, Krishnan M
Brann, Darrell W
author_sort Dhandapani, Krishnan M
collection PubMed
description BACKGROUND: Recent work has suggested that the ovarian steroid 17β-estradiol, at physiological concentrations, may exert protective effects in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and acute ischemic stroke. While physiological concentrations of estrogen have consistently been shown to be protective in vivo, direct protection upon purified neurons is controversial, with many investigators unable to show a direct protection in highly purified primary neuronal cultures. These findings suggest that while direct protection may occur in some instances, an alternative or parallel pathway for protection may exist which could involve another cell type in the brain. PRESENTATION OF THE HYPOTHESIS: A hypothetical indirect protective mechanism is proposed whereby physiological levels of estrogen stimulate the release of astrocyte-derived neuroprotective factors, which aid in the protection of neurons from cell death. This hypothesis is attractive as it provides a potential mechanism for protection of estrogen receptor (ER)-negative neurons through an astrocyte intermediate. It is envisioned that the indirect pathway could act in concert with the direct pathway to achieve a more widespread global protection of both ER+ and ER- neurons. TESTING THE HYPOTHESIS: We hypothesize that targeted deletion of estrogen receptors in astrocytes will significantly attenuate the neuroprotective effects of estrogen. IMPLICATIONS OF THE HYPOTHESIS: If true, the hypothesis would significantly advance our understanding of endocrine-glia-neuron interactions. It may also help explain, at least in part, the reported beneficial effects of estrogen in neurodegenerative disorders. Finally, it also sets the stage for potential extension of the hypothetical mechanism to other important estrogen actions in the brain such as neurotropism, neurosecretion, and synaptic plasticity.
format Text
id pubmed-116596
institution National Center for Biotechnology Information
language English
publishDate 2002
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-1165962002-06-28 Estrogen-Astrocyte interactions: Implications for neuroprotection Dhandapani, Krishnan M Brann, Darrell W BMC Neurosci Hypothesis BACKGROUND: Recent work has suggested that the ovarian steroid 17β-estradiol, at physiological concentrations, may exert protective effects in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and acute ischemic stroke. While physiological concentrations of estrogen have consistently been shown to be protective in vivo, direct protection upon purified neurons is controversial, with many investigators unable to show a direct protection in highly purified primary neuronal cultures. These findings suggest that while direct protection may occur in some instances, an alternative or parallel pathway for protection may exist which could involve another cell type in the brain. PRESENTATION OF THE HYPOTHESIS: A hypothetical indirect protective mechanism is proposed whereby physiological levels of estrogen stimulate the release of astrocyte-derived neuroprotective factors, which aid in the protection of neurons from cell death. This hypothesis is attractive as it provides a potential mechanism for protection of estrogen receptor (ER)-negative neurons through an astrocyte intermediate. It is envisioned that the indirect pathway could act in concert with the direct pathway to achieve a more widespread global protection of both ER+ and ER- neurons. TESTING THE HYPOTHESIS: We hypothesize that targeted deletion of estrogen receptors in astrocytes will significantly attenuate the neuroprotective effects of estrogen. IMPLICATIONS OF THE HYPOTHESIS: If true, the hypothesis would significantly advance our understanding of endocrine-glia-neuron interactions. It may also help explain, at least in part, the reported beneficial effects of estrogen in neurodegenerative disorders. Finally, it also sets the stage for potential extension of the hypothetical mechanism to other important estrogen actions in the brain such as neurotropism, neurosecretion, and synaptic plasticity. BioMed Central 2002-06-07 /pmc/articles/PMC116596/ /pubmed/12067420 http://dx.doi.org/10.1186/1471-2202-3-6 Text en Copyright © 2002 Dhandapani and Brann; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Hypothesis
Dhandapani, Krishnan M
Brann, Darrell W
Estrogen-Astrocyte interactions: Implications for neuroprotection
title Estrogen-Astrocyte interactions: Implications for neuroprotection
title_full Estrogen-Astrocyte interactions: Implications for neuroprotection
title_fullStr Estrogen-Astrocyte interactions: Implications for neuroprotection
title_full_unstemmed Estrogen-Astrocyte interactions: Implications for neuroprotection
title_short Estrogen-Astrocyte interactions: Implications for neuroprotection
title_sort estrogen-astrocyte interactions: implications for neuroprotection
topic Hypothesis
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116596/
https://www.ncbi.nlm.nih.gov/pubmed/12067420
http://dx.doi.org/10.1186/1471-2202-3-6
work_keys_str_mv AT dhandapanikrishnanm estrogenastrocyteinteractionsimplicationsforneuroprotection
AT branndarrellw estrogenastrocyteinteractionsimplicationsforneuroprotection