Cargando…
Robust detection of periodic time series measured from biological systems
BACKGROUND: Periodic phenomena are widespread in biology. The problem of finding periodicity in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a given time series. The exact noise characteristics are unknown in many bioinformatics applications. Furth...
Autores principales: | Ahdesmäki, Miika, Lähdesmäki, Harri, Pearson, Ron, Huttunen, Heikki, Yli-Harja, Olli |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168888/ https://www.ncbi.nlm.nih.gov/pubmed/15892890 http://dx.doi.org/10.1186/1471-2105-6-117 |
Ejemplares similares
-
Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data
por: Ahdesmäki, Miika, et al.
Publicado: (2007) -
Simulation of microarray data with realistic characteristics
por: Nykter, Matti, et al.
Publicado: (2006) -
A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data
por: Dai, Xiaofeng, et al.
Publicado: (2009) -
In silico microdissection of microarray data from heterogeneous cell populations
por: Lähdesmäki, Harri, et al.
Publicado: (2005) -
A protein–protein interaction guided method for competitive transcription factor binding improves target predictions
por: Laurila, Kirsti, et al.
Publicado: (2009)