Cargando…

Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases

BACKGROUND: In mammals, L-threonine is an indispensable amino acid. The conversion of L-threonine to glycine occurs through a two-step biochemical pathway involving the enzymes L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. The L-threonine 3-dehydrogenase enzyme has been p...

Descripción completa

Detalles Bibliográficos
Autor principal: Edgar, Alasdair J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC117216/
https://www.ncbi.nlm.nih.gov/pubmed/12097150
http://dx.doi.org/10.1186/1471-2091-3-19
Descripción
Sumario:BACKGROUND: In mammals, L-threonine is an indispensable amino acid. The conversion of L-threonine to glycine occurs through a two-step biochemical pathway involving the enzymes L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. The L-threonine 3-dehydrogenase enzyme has been purified and characterised, but the L-threonine 3-dehydrogenase gene has not previously been identified in mammals. RESULTS: Transcripts for L-threonine 3-dehydrogenase from both the mouse and pig are reported. The ORFs of both L-threonine dehydrogenase cDNAs encode proteins of 373 residues (41.5 kDa) and they share 80% identity. The mouse gene is located on chromosome 14, band C. The amino-terminal regions of these proteins have characteristics of a mitochondrial targeting sequence and are related to the UDP-galactose 4-epimerases, with both enzyme families having an amino-terminal NAD(+) binding domain. That these cDNAs encode threonine dehydrogenases was shown, previously, by tiling 13 tryptic peptide sequences, obtained from purified L-threonine dehydrogenase isolated from porcine liver mitochondria, on to the pig ORF. These eukaryotic L-threonine dehydrogenases also have significant similarity with the prokaryote L-threonine dehydrogenase amino-terminus peptide sequence of the bacterium, Clostridium sticklandii. In murine tissues, the expression of both L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase mRNAs were highest in the liver and were also present in brain, heart, kidney, liver, lung, skeletal muscle, spleen and testis. CONCLUSIONS: The first cloning of transcripts for L-threonine dehydrogenase from eukaryotic organisms are reported. However, they do not have any significant sequence homology to the well-characterised Escherichia coli L-threonine dehydrogenase.