Cargando…
Integrative analysis of multiple gene expression profiles with quality-adjusted effect size models
BACKGROUND: With the explosion of microarray studies, an enormous amount of data is being produced. Systematic integration of gene expression data from different sources increases statistical power of detecting differentially expressed genes and allows assessment of heterogeneity. The challenge, how...
Autores principales: | Hu, Pingzhao, Greenwood, Celia MT, Beyene, Joseph |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173085/ https://www.ncbi.nlm.nih.gov/pubmed/15921507 http://dx.doi.org/10.1186/1471-2105-6-128 |
Ejemplares similares
-
Integrative Analysis of Gene Expression Data Including an Assessment of Pathway Enrichment for Predicting Prostate Cancer
por: Hu, Pingzhao, et al.
Publicado: (2007) -
Using the ratio of means as the effect size measure in combining results of microarray experiments
por: Hu, Pingzhao, et al.
Publicado: (2009) -
Tests for differential gene expression using weights in oligonucleotide microarray experiments
por: Hu, Pingzhao, et al.
Publicado: (2006) -
Identifying cis- and trans-acting single-nucleotide polymorphisms controlling lymphocyte gene expression in humans
por: Hu, Pingzhao, et al.
Publicado: (2007) -
Data Integration in Genetics and Genomics: Methods and Challenges
por: Hamid, Jemila S., et al.
Publicado: (2009)