Cargando…

The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests

BACKGROUND: Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups. M...

Descripción completa

Detalles Bibliográficos
Autores principales: Korhonen, Rami K, Koistinen, Arto, Konttinen, Yrjö T, Santavirta, Seppo S, Lappalainen, Reijo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173123/
https://www.ncbi.nlm.nih.gov/pubmed/15904521
http://dx.doi.org/10.1186/1475-925X-4-32
_version_ 1782124462889500672
author Korhonen, Rami K
Koistinen, Arto
Konttinen, Yrjö T
Santavirta, Seppo S
Lappalainen, Reijo
author_facet Korhonen, Rami K
Koistinen, Arto
Konttinen, Yrjö T
Santavirta, Seppo S
Lappalainen, Reijo
author_sort Korhonen, Rami K
collection PubMed
description BACKGROUND: Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups. METHODS: Acetabular cups with different geometries (Link(®): IP and Lubinus eccentric) were tested cyclically in a simulator at 45° and 60° abduction angles. Finite element (FE) meshes were generated and two additional designs were reconstructed to test the effects of the cup clearance and thickness. Contact pressures at cup-head and cup-cement interfaces were calculated as a function of loading force at 45°, 60° and 80° abduction angles. RESULTS: At the cup-head interface, IP experienced lower contact pressures than the Lubinus eccentric at low loading forces. However, at higher loading forces, much higher contact pressures were produced on the surface of IP cup. An increase in the abduction angle increased contact pressure in the IP model, but this did not occur to any major extent with the Lubinus eccentric model. At the cup-cement interface, IP experienced lower contact pressures. Increased clearance between cup and head increased contact pressure both at cup-head and cup-cement interfaces, whereas a decreased thickness of polyethylene layer increased contact pressure only at the cup-cement interface. FE results were consistent with experimental tests and acetabular cup deformations. CONCLUSION: FE analyses showed that geometrical design, thickness and abduction angle of the acetabular cup, as well as the clearance between the cup and head do change significantly the mechanical stresses experienced by a cemented UHMWPE acetabular cup. These factors should be taken into account in future development of THR prostheses. FE technique is a useful tool with which to address these issues.
format Text
id pubmed-1173123
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-11731232005-07-07 The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests Korhonen, Rami K Koistinen, Arto Konttinen, Yrjö T Santavirta, Seppo S Lappalainen, Reijo Biomed Eng Online Research BACKGROUND: Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups. METHODS: Acetabular cups with different geometries (Link(®): IP and Lubinus eccentric) were tested cyclically in a simulator at 45° and 60° abduction angles. Finite element (FE) meshes were generated and two additional designs were reconstructed to test the effects of the cup clearance and thickness. Contact pressures at cup-head and cup-cement interfaces were calculated as a function of loading force at 45°, 60° and 80° abduction angles. RESULTS: At the cup-head interface, IP experienced lower contact pressures than the Lubinus eccentric at low loading forces. However, at higher loading forces, much higher contact pressures were produced on the surface of IP cup. An increase in the abduction angle increased contact pressure in the IP model, but this did not occur to any major extent with the Lubinus eccentric model. At the cup-cement interface, IP experienced lower contact pressures. Increased clearance between cup and head increased contact pressure both at cup-head and cup-cement interfaces, whereas a decreased thickness of polyethylene layer increased contact pressure only at the cup-cement interface. FE results were consistent with experimental tests and acetabular cup deformations. CONCLUSION: FE analyses showed that geometrical design, thickness and abduction angle of the acetabular cup, as well as the clearance between the cup and head do change significantly the mechanical stresses experienced by a cemented UHMWPE acetabular cup. These factors should be taken into account in future development of THR prostheses. FE technique is a useful tool with which to address these issues. BioMed Central 2005-05-17 /pmc/articles/PMC1173123/ /pubmed/15904521 http://dx.doi.org/10.1186/1475-925X-4-32 Text en Copyright © 2005 Korhonen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Korhonen, Rami K
Koistinen, Arto
Konttinen, Yrjö T
Santavirta, Seppo S
Lappalainen, Reijo
The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title_full The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title_fullStr The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title_full_unstemmed The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title_short The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests
title_sort effect of geometry and abduction angle on the stresses in cemented uhmwpe acetabular cups – finite element simulations and experimental tests
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173123/
https://www.ncbi.nlm.nih.gov/pubmed/15904521
http://dx.doi.org/10.1186/1475-925X-4-32
work_keys_str_mv AT korhonenramik theeffectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT koistinenarto theeffectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT konttinenyrjot theeffectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT santavirtaseppos theeffectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT lappalainenreijo theeffectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT korhonenramik effectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT koistinenarto effectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT konttinenyrjot effectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT santavirtaseppos effectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests
AT lappalainenreijo effectofgeometryandabductionangleonthestressesincementeduhmwpeacetabularcupsfiniteelementsimulationsandexperimentaltests