Cargando…
Artificial neural networks as prediction tools in the critically ill
The past 25 years have witnessed the development of improved tools with which to predict short-term and long-term outcomes after critical illness. The general paradigm for constructing the best known tools has been the logistic regression model. Recently, a variety of alternative tools, such as arti...
Autor principal: | Clermont, Gilles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1175945/ https://www.ncbi.nlm.nih.gov/pubmed/15774070 http://dx.doi.org/10.1186/cc3507 |
Ejemplares similares
-
Modeling longitudinal data in acute illness
por: Clermont, Gilles
Publicado: (2007) -
Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
por: Spolidoro, Giulia C. I., et al.
Publicado: (2021) -
Predicting late anemia in critical illness
por: Milbrandt, Eric B, et al.
Publicado: (2006) -
Plasma citrulline in the critically ill: intriguing biomarker, cautious interpretation
por: Piton, Gaël, et al.
Publicado: (2015) -
Development of artificial neural network models for paediatric critical illness in South Africa
por: Pienaar, Michael A., et al.
Publicado: (2022)