Cargando…
The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase
Three conserved aspartate residues in the largest subunit of multisubunit RNA polymerases (RNAPs) coordinate two Mg(2+) ions involved in the catalysis of phosphodiester bond synthesis. A structural model based on the stereochemistry of nucleotidyl transfer reaction as well as recent crystallographic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180743/ https://www.ncbi.nlm.nih.gov/pubmed/16049026 http://dx.doi.org/10.1093/nar/gki688 |
_version_ | 1782124612738351104 |
---|---|
author | Sosunov, Vasily Zorov, Savva Sosunova, Ekaterina Nikolaev, Anatoly Zakeyeva, Irina Bass, Irina Goldfarb, Alex Nikiforov, Vadim Severinov, Konstantin Mustaev, Arkady |
author_facet | Sosunov, Vasily Zorov, Savva Sosunova, Ekaterina Nikolaev, Anatoly Zakeyeva, Irina Bass, Irina Goldfarb, Alex Nikiforov, Vadim Severinov, Konstantin Mustaev, Arkady |
author_sort | Sosunov, Vasily |
collection | PubMed |
description | Three conserved aspartate residues in the largest subunit of multisubunit RNA polymerases (RNAPs) coordinate two Mg(2+) ions involved in the catalysis of phosphodiester bond synthesis. A structural model based on the stereochemistry of nucleotidyl transfer reaction as well as recent crystallographic data predict that these Mg(2+) ions should also be involved in the reverse reaction of pyrophosphorolysis as well as in the endo- and exonucleolytic cleavage of the nascent RNA. Here, we check these predictions by constructing point substitutions of each of the three Asp residues in the β′ subunit of Escherichia coli RNAP and testing the mutant enzymes' functions. Using artificially assembled elongation complexes, we demonstrate that substitutions of any of the three aspartates dramatically reduce all known RNAP catalytic activities, supporting the model's predictions that same amino acids participate in all RNAP catalytic reactions. We demonstrate that though substitutions in the DFDGD motif decrease Mg(2+) binding to free RNAP below detection limits, the apparent affinity to Mg(2+) in transcription complexes formed by the mutant and wild-type RNAPs is similar, suggesting that NTP substrates and/or nucleic acids actively contribute to the retention of active center Mg(2+). |
format | Text |
id | pubmed-1180743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-11807432005-07-27 The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase Sosunov, Vasily Zorov, Savva Sosunova, Ekaterina Nikolaev, Anatoly Zakeyeva, Irina Bass, Irina Goldfarb, Alex Nikiforov, Vadim Severinov, Konstantin Mustaev, Arkady Nucleic Acids Res Article Three conserved aspartate residues in the largest subunit of multisubunit RNA polymerases (RNAPs) coordinate two Mg(2+) ions involved in the catalysis of phosphodiester bond synthesis. A structural model based on the stereochemistry of nucleotidyl transfer reaction as well as recent crystallographic data predict that these Mg(2+) ions should also be involved in the reverse reaction of pyrophosphorolysis as well as in the endo- and exonucleolytic cleavage of the nascent RNA. Here, we check these predictions by constructing point substitutions of each of the three Asp residues in the β′ subunit of Escherichia coli RNAP and testing the mutant enzymes' functions. Using artificially assembled elongation complexes, we demonstrate that substitutions of any of the three aspartates dramatically reduce all known RNAP catalytic activities, supporting the model's predictions that same amino acids participate in all RNAP catalytic reactions. We demonstrate that though substitutions in the DFDGD motif decrease Mg(2+) binding to free RNAP below detection limits, the apparent affinity to Mg(2+) in transcription complexes formed by the mutant and wild-type RNAPs is similar, suggesting that NTP substrates and/or nucleic acids actively contribute to the retention of active center Mg(2+). Oxford University Press 2005 2005-07-26 /pmc/articles/PMC1180743/ /pubmed/16049026 http://dx.doi.org/10.1093/nar/gki688 Text en © The Author 2005. Published by Oxford University Press. All rights reserved |
spellingShingle | Article Sosunov, Vasily Zorov, Savva Sosunova, Ekaterina Nikolaev, Anatoly Zakeyeva, Irina Bass, Irina Goldfarb, Alex Nikiforov, Vadim Severinov, Konstantin Mustaev, Arkady The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title | The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title_full | The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title_fullStr | The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title_full_unstemmed | The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title_short | The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase |
title_sort | involvement of the aspartate triad of the active center in all catalytic activities of multisubunit rna polymerase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180743/ https://www.ncbi.nlm.nih.gov/pubmed/16049026 http://dx.doi.org/10.1093/nar/gki688 |
work_keys_str_mv | AT sosunovvasily theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT zorovsavva theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT sosunovaekaterina theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT nikolaevanatoly theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT zakeyevairina theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT bassirina theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT goldfarbalex theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT nikiforovvadim theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT severinovkonstantin theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT mustaevarkady theinvolvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT sosunovvasily involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT zorovsavva involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT sosunovaekaterina involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT nikolaevanatoly involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT zakeyevairina involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT bassirina involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT goldfarbalex involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT nikiforovvadim involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT severinovkonstantin involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase AT mustaevarkady involvementoftheaspartatetriadoftheactivecenterinallcatalyticactivitiesofmultisubunitrnapolymerase |