Cargando…
Contextual weighting for Support Vector Machines in literature mining: an application to gene versus protein name disambiguation
BACKGROUND: The ability to distinguish between genes and proteins is essential for understanding biological text. Support Vector Machines (SVMs) have been proven to be very efficient in general data mining tasks. We explore their capability for the gene versus protein name disambiguation task. RESUL...
Autores principales: | Pahikkala, Tapio, Ginter, Filip, Boberg, Jorma, Järvinen, Jouni, Salakoski, Tapio |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180820/ https://www.ncbi.nlm.nih.gov/pubmed/15972097 http://dx.doi.org/10.1186/1471-2105-6-157 |
Ejemplares similares
-
BioInfer: a corpus for information extraction in the biomedical domain
por: Pyysalo, Sampo, et al.
Publicado: (2007) -
Potent pairing: ensemble of long short-term memory networks and support vector machine for chemical-protein relation extraction
por: Mehryary, Farrokh, et al.
Publicado: (2018) -
All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
por: Airola, Antti, et al.
Publicado: (2008) -
Wide-scope biomedical named entity recognition and normalization with CRFs, fuzzy matching and character level modeling
por: Kaewphan, Suwisa, et al.
Publicado: (2018) -
Regularized Machine Learning in the Genetic Prediction of Complex Traits
por: Okser, Sebastian, et al.
Publicado: (2014)