Cargando…

Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes

BACKGROUND: In the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. [1] and the NCI60 dataset of Ross et al. [2] present multicl...

Descripción completa

Detalles Bibliográficos
Autores principales: Jirapech-Umpai, Thanyaluk, Aitken, Stuart
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181625/
https://www.ncbi.nlm.nih.gov/pubmed/15958165
http://dx.doi.org/10.1186/1471-2105-6-148
Descripción
Sumario:BACKGROUND: In the clinical context, samples assayed by microarray are often classified by cell line or tumour type and it is of interest to discover a set of genes that can be used as class predictors. The leukemia dataset of Golub et al. [1] and the NCI60 dataset of Ross et al. [2] present multiclass classification problems where three tumour types and nine cell lines respectively must be identified. We apply an evolutionary algorithm to identify the near-optimal set of predictive genes that classify the data. We also examine the initial gene selection step whereby the most informative genes are selected from the genes assayed. RESULTS: In the absence of feature selection, classification accuracy on the training data is typically good, but not replicated on the testing data. Gene selection using the RankGene software [3] is shown to significantly improve performance on the testing data. Further, we show that the choice of feature selection criteria can have a significant effect on accuracy. The evolutionary algorithm is shown to perform stably across the space of possible parameter settings – indicating the robustness of the approach. We assess performance using a low variance estimation technique, and present an analysis of the genes most often selected as predictors. CONCLUSION: The computational methods we have developed perform robustly and accurately, and yield results in accord with clinical knowledge: A Z-score analysis of the genes most frequently selected identifies genes known to discriminate AML and Pre-T ALL leukemia. This study also confirms that significantly different sets of genes are found to be most discriminatory as the sample classes are refined.