Cargando…

Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity

We have previously identified in the pol gene of human immunodeficiency virus type 1 (HIV-1) a new positive transcriptional regulatory element (nt 4481–4982) containing recognition sites for nuclear proteins (sites B, C, D and a GC-box) [C. Van Lint, J. Ghysdael, P. Paras, Jr, A. Burny and E. Verdin...

Descripción completa

Detalles Bibliográficos
Autores principales: Goffin, Véronique, Demonté, Dominique, Vanhulle, Caroline, de Walque, Stéphane, de Launoit, Yvan, Burny, Arsène, Collette, Yves, Van Lint, Carine
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182164/
https://www.ncbi.nlm.nih.gov/pubmed/16061936
http://dx.doi.org/10.1093/nar/gki720
Descripción
Sumario:We have previously identified in the pol gene of human immunodeficiency virus type 1 (HIV-1) a new positive transcriptional regulatory element (nt 4481–4982) containing recognition sites for nuclear proteins (sites B, C, D and a GC-box) [C. Van Lint, J. Ghysdael, P. Paras, Jr, A. Burny and E. Verdin (1994) J. Virol. 68, 2632–2648]. In this study, we have further physically characterized each binding site and have shown that the transcription factors Oct-1, Oct-2, PU.1, Sp1 and Sp3 interact in vitro with the pol region. Chromatin immunoprecipitation assays using HIV-infected cell lines demonstrated in the context of chromatin that Sp1, Sp3, Oct-1 and PU.1 are recruited to the HS7 region in vivo. For each site, we have identified mutations abolishing factor binding to their cognate DNA sequences without altering the underlying amino acid sequence of the integrase. By transient transfection assays, we have demonstrated the involvement of the pol binding sites in the transcriptional enhancing activity of the intragenic region. Our functional results with multimerized wild-type and mutated pol binding sites separately (i.e. in the absence of the other sites) have demonstrated that the PU.1, Sp1, Sp3 and Oct-1 transcription factors regulate the transcriptional activity of a heterologous promoter through their respective HS7 binding sites. Finally, we have investigated the physiological role of the HS7 binding sites in HIV-1 replication and have shown that these sites are important for viral infectivity.