Cargando…
pSLIP: SVM based protein subcellular localization prediction using multiple physicochemical properties
BACKGROUND: Protein subcellular localization is an important determinant of protein function and hence, reliable methods for prediction of localization are needed. A number of prediction algorithms have been developed based on amino acid compositions or on the N-terminal characteristics (signal pept...
Autores principales: | Sarda, Deepak, Chua, Gek Huey, Li, Kuo-Bin, Krishnan, Arun |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182350/ https://www.ncbi.nlm.nih.gov/pubmed/15963230 http://dx.doi.org/10.1186/1471-2105-6-152 |
Ejemplares similares
-
Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines
por: Wang, Jiren, et al.
Publicado: (2005) -
LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST
por: Xie, Dan, et al.
Publicado: (2005) -
Gram-positive and gram-negative subcellular localization using rotation forest and physicochemical-based features
por: Dehzangi, Abdollah, et al.
Publicado: (2015) -
SVM and SVM Ensembles in Breast Cancer Prediction
por: Huang, Min-Wei, et al.
Publicado: (2017) -
DBMLoc: a Database of proteins with multiple subcellular localizations
por: Zhang, Song, et al.
Publicado: (2008)