Cargando…
Selecting Genes by Test Statistics
Gene selection is an important issue in analyzing multiclass microarray data. Among many proposed selection methods, the traditional ANOVA F test statistic has been employed to identify informative genes for both class prediction (classification) and discovery problems. However, the F test statistic...
Autores principales: | Chen, Dechang, Liu, Zhenqiu, Ma, Xiaobin, Hua, Dong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184045/ https://www.ncbi.nlm.nih.gov/pubmed/16046818 http://dx.doi.org/10.1155/JBB.2005.132 |
Ejemplares similares
-
Gene Expression Data Classification With Kernel
Principal Component Analysis
por: Liu, Zhenqiu, et al.
Publicado: (2005) -
Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
por: Liu, Zhenqiu, et al.
Publicado: (2013) -
Correction: Class Prediction and Feature Selection with Linear Optimization for Metagenomic Count Data
por: Liu, Zhenqiu, et al.
Publicado: (2014) -
Computational Data Mining in Cancer Bioinformatics and Cancer Epidemiology
por: Liu, Zhenqiu, et al.
Publicado: (2009) -
Kernel based methods for accelerated failure time model with ultra-high dimensional data
por: Liu, Zhenqiu, et al.
Publicado: (2010)