Cargando…
Classification and Selection of Biomarkers in Genomic Data Using LASSO
High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been done on assessing univariate associations between gene expression profiles with clinical outcome (variable selection) or on developing classification...
Autores principales: | Ghosh, Debashis, Chinnaiyan, Arul M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184048/ https://www.ncbi.nlm.nih.gov/pubmed/16046820 http://dx.doi.org/10.1155/JBB.2005.147 |
Ejemplares similares
-
Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data
por: Shen, Ronglai, et al.
Publicado: (2004) -
A Latent Variable Approach for Meta-Analysis of Gene Expression Data from Multiple Microarray Experiments
por: Choi, Hyungwon, et al.
Publicado: (2007) -
Pathway analysis reveals functional convergence of gene expression profiles in breast cancer
por: Shen, Ronglai, et al.
Publicado: (2008) -
Joint Variable Selection and Classification with Immunohistochemical Data
por: Ghosh, Debashis, et al.
Publicado: (2009) -
Bayesian Hyper-LASSO Classification for Feature Selection with Application to Endometrial Cancer RNA-seq Data
por: Jiang, Lai, et al.
Publicado: (2020)