Cargando…
Gene Expression Data Classification With Kernel Principal Component Analysis
One important feature of the gene expression data is that the number of genes M far exceeds the number of samples N. Standard statistical methods do not work well when N < M. Development of new methodologies or modification of existing methodologies is needed for the analysis of the microarray da...
Autores principales: | Liu, Zhenqiu, Chen, Dechang, Bensmail, Halima |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184105/ https://www.ncbi.nlm.nih.gov/pubmed/16046821 http://dx.doi.org/10.1155/JBB.2005.155 |
Ejemplares similares
-
Efficient Feature Selection and Multiclass Classification with Integrated Instance and Model Based Learning
por: Liu, Zhenqiu, et al.
Publicado: (2012) -
Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis
por: Liu, Zhenqiu
Publicado: (2020) -
Gene- or region-based association study via kernel principal component analysis
por: Gao, Qingsong, et al.
Publicado: (2011) -
Kernel Principal Component Analysis of Coil Compression in Parallel Imaging
por: Chang, Yuchou, et al.
Publicado: (2018) -
Kernel based methods for accelerated failure time model with ultra-high dimensional data
por: Liu, Zhenqiu, et al.
Publicado: (2010)