Cargando…

Computational optical biopsy

Optical molecular imaging is based on fluorescence or bioluminescence, and hindered by photon scattering in the tissue, especially in patient studies. Here we propose a computational optical biopsy (COB) approach to localize and quantify a light source deep inside a subject. In contrast to existing...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yi, Jiang, Ming, Wang, Ge
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1185552/
https://www.ncbi.nlm.nih.gov/pubmed/15955235
http://dx.doi.org/10.1186/1475-925X-4-36
Descripción
Sumario:Optical molecular imaging is based on fluorescence or bioluminescence, and hindered by photon scattering in the tissue, especially in patient studies. Here we propose a computational optical biopsy (COB) approach to localize and quantify a light source deep inside a subject. In contrast to existing optical biopsy techniques, our scheme is to collect optical signals directly from a region of interest along one or multiple biopsy paths in a subject, and then compute features of an underlying light source distribution. In this paper, we formulate this inverse problem in the framework of diffusion approximation, demonstrate the solution uniqueness properties in two representative configurations, and obtain analytic solutions for reconstruction of both optical properties and source parameters.