Cargando…
Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
BACKGROUND: The evaluation of statistical significance has become a critical process in identifying differentially expressed genes in microarray studies. Classical p-value adjustment methods for multiple comparisons such as family-wise error rate (FWER) have been found to be too conservative in anal...
Autores principales: | Jain, Nitin, Cho, HyungJun, O'Connell, Michael, Lee, Jae K |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187876/ https://www.ncbi.nlm.nih.gov/pubmed/16042779 http://dx.doi.org/10.1186/1471-2105-6-187 |
Ejemplares similares
-
Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data
por: Pelz, Carl R, et al.
Publicado: (2008) -
A unified approach to false discovery rate estimation
por: Strimmer, Korbinian
Publicado: (2008) -
An empirical study using permutation-based resampling in meta-regression
por: Gagnier, Joel J, et al.
Publicado: (2012) -
Target-small decoy search strategy for false discovery rate estimation
por: Kim, Hyunwoo, et al.
Publicado: (2019) -
Ranking analysis of F-statistics for microarray data
por: Tan, Yuan-De, et al.
Publicado: (2008)