Cargando…

Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression

BACKGROUND: Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired materna...

Descripción completa

Detalles Bibliográficos
Autores principales: Gilbert, Jeffrey S, Lang, Alvin L, Nijland, Mark J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187921/
https://www.ncbi.nlm.nih.gov/pubmed/16018810
http://dx.doi.org/10.1186/1477-7827-3-27
_version_ 1782124769022312448
author Gilbert, Jeffrey S
Lang, Alvin L
Nijland, Mark J
author_facet Gilbert, Jeffrey S
Lang, Alvin L
Nijland, Mark J
author_sort Gilbert, Jeffrey S
collection PubMed
description BACKGROUND: Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28–78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. RESULTS: No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 ± 0.85 vs. 3.05 ± 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. CONCLUSION: The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization.
format Text
id pubmed-1187921
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-11879212005-08-18 Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression Gilbert, Jeffrey S Lang, Alvin L Nijland, Mark J Reprod Biol Endocrinol Research BACKGROUND: Adequate maternal nutrition during gestation is requisite for fetal nutrition and development. While a large group of epidemiological studies indicate poor fetal nutrition increases heart disease risk and mortality in later life, little work has focused on the effects of impaired maternal nutrition on fetal heart development. We have previously shown that 50% global nutrient restriction from 28–78 days of gestation (early to mid-pregnancy; term = 147 days) in sheep at mid-gestation retards fetal growth while protecting growth of heart and results in hypertensive male offspring at nine months of age. In the present study, we evaluate LV gene transcription using RNA protection assay and real-time reverse transcriptase polymerase chain reaction, and protein expression using western blot, of VEGF and AT1 and AT2 receptors for AngII at mid-gestation in fetuses from pregnant ewes fed either 100% (C) or 50% (NR) diet during early to mid-gestation. RESULTS: No difference between the NR (n = 6) and C (n = 6) groups was found in gene transcription of the AngII receptors. Immunoreactive AT1 (1918.4 +/- 154.2 vs. 3881.2 +/- 494.9; P < 0.01) and AT2 (1729.9 +/- 293.6 vs. 3043.3 +/- 373.2; P < 0.02) was decreased in the LV of NR fetuses compared to C fetuses. The LV of fetuses exposed to NR had greater transcription of mRNA for VEGF (5.42 ± 0.85 vs. 3.05 ± 0.19; P < 0.03) than respective C LV, while no change was observed in immunoreactive VEGF. CONCLUSION: The present study demonstrates that VEGF, AT1 and AT2 message and protein are not tightly coupled, pointing to post-transcriptional control points in the mid gestation NR fetus. The present data also suggest that the role of VEGF and the renin-angiotensin system receptors during conditions inducing protected cardiac growth is distinct from the role these proteins may play in normal fetal cardiac growth. The present findings may help explain epidemiological studies that indicate fetuses with low birth weight carry an increased risk of mortality from coronary and cardiovascular disease, particularly if these individuals have reduced cardiovascular reserve due to an epigenetic decrease in vascularization. BioMed Central 2005-07-14 /pmc/articles/PMC1187921/ /pubmed/16018810 http://dx.doi.org/10.1186/1477-7827-3-27 Text en Copyright © 2005 Gilbert et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Gilbert, Jeffrey S
Lang, Alvin L
Nijland, Mark J
Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title_full Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title_fullStr Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title_full_unstemmed Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title_short Maternal nutrient restriction and the fetal left ventricle: Decreased angiotensin receptor expression
title_sort maternal nutrient restriction and the fetal left ventricle: decreased angiotensin receptor expression
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187921/
https://www.ncbi.nlm.nih.gov/pubmed/16018810
http://dx.doi.org/10.1186/1477-7827-3-27
work_keys_str_mv AT gilbertjeffreys maternalnutrientrestrictionandthefetalleftventricledecreasedangiotensinreceptorexpression
AT langalvinl maternalnutrientrestrictionandthefetalleftventricledecreasedangiotensinreceptorexpression
AT nijlandmarkj maternalnutrientrestrictionandthefetalleftventricledecreasedangiotensinreceptorexpression