Cargando…
Inhibition of Endothelial Activation: A New Way to Treat Cerebral Malaria?
BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM), remains incompletely understood. However tumor necrosis factor (TNF) is thought to play a key role in the development of this neurological syndrome, as well a...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188254/ https://www.ncbi.nlm.nih.gov/pubmed/16104828 http://dx.doi.org/10.1371/journal.pmed.0020245 |
Sumario: | BACKGROUND: Malaria is still a major public health problem, partly because the pathogenesis of its major complication, cerebral malaria (CM), remains incompletely understood. However tumor necrosis factor (TNF) is thought to play a key role in the development of this neurological syndrome, as well as lymphotoxin α (LT). METHODS AND FINDINGS: Using an in vitro model of CM based on human brain–derived endothelial cells (HBEC-5i), we demonstrate the anti-inflammatory effect of LMP-420, a 2-NH(2)-6-Cl-9-[(5-dihydroxyboryl)-pentyl] purine that is a transcriptional inhibitor of TNF. When added before or concomitantly to TNF, LMP-420 inhibits endothelial cell (EC) activation, i.e., the up-regulation of both ICAM-1 and VCAM-1 on HBEC-5i surfaces. Subsequently, LMP-420 abolishes the cytoadherence of ICAM-1-specific Plasmodium falciparum–parasitized red blood cells on these EC. Identical but weaker effects are observed when LMP-420 is added with LT. LMP-420 also causes a dramatic reduction of HBEC-5i vesiculation induced by TNF or LT stimulation, as assessed by microparticle release. CONCLUSION: These data provide evidence for a strong in vitro anti-inflammatory effect of LMP-420 and suggest that targeting host cell pathogenic mechanisms might provide a new therapeutic approach to improving the outcome of CM patients. |
---|