Cargando…
FACT – a framework for the functional interpretation of high-throughput experiments
BACKGROUND: Interpreting the results of high-throughput experiments, such as those obtained from DNA-microarrays, is an often time-consuming task due to the high number of data-points that need to be analyzed in parallel. It is usually a matter of extensive testing and unknown beforehand, which of t...
Autores principales: | Kokocinski, Felix, Delhomme, Nicolas, Wrobel, Gunnar, Hummerich, Lars, Toedt, Grischa, Lichter, Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1189078/ https://www.ncbi.nlm.nih.gov/pubmed/15985174 http://dx.doi.org/10.1186/1471-2105-6-161 |
Ejemplares similares
-
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data
por: Becker, Natalia, et al.
Publicado: (2011) -
R.ROSETTA: an interpretable machine learning framework
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Nos2 Inactivation Promotes the Development of Medulloblastoma in Ptch1(+/−) Mice by Deregulation of Gap43–Dependent Granule Cell Precursor Migration
por: Haag, Daniel, et al.
Publicado: (2012) -
AnnoTrack - a tracking system for genome annotation
por: Kokocinski, Felix, et al.
Publicado: (2010) -
An interpretable framework for clustering single-cell RNA-Seq datasets
por: Zhang, Jesse M., et al.
Publicado: (2018)