Cargando…
Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines
BACKGROUND: Predicting the subcellular localization of proteins is important for determining the function of proteins. Previous works focused on predicting protein localization in Gram-negative bacteria obtained good results. However, these methods had relatively low accuracies for the localization...
Autores principales: | Wang, Jiren, Sung, Wing-Kin, Krishnan, Arun, Li, Kuo-Bin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1190155/ https://www.ncbi.nlm.nih.gov/pubmed/16011808 http://dx.doi.org/10.1186/1471-2105-6-174 |
Ejemplares similares
-
ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea
por: Paramasivam, Nagarajan, et al.
Publicado: (2011) -
Multifunctional SEVA shuttle vectors for actinomycetes and Gram‐negative bacteria
por: García‐Gutiérrez, Coral, et al.
Publicado: (2020) -
Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition
por: Tamura, Takeyuki, et al.
Publicado: (2007) -
Gram-positive and gram-negative subcellular localization using rotation forest and physicochemical-based features
por: Dehzangi, Abdollah, et al.
Publicado: (2015) -
Multiple Responses of Gram-Positive and Gram-Negative Bacteria to Mixture of Hydrocarbons
por: Marilena Lăzăroaie, Mihaela
Publicado: (2010)