Cargando…
G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells
Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characteriz...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1190220/ https://www.ncbi.nlm.nih.gov/pubmed/16107218 http://dx.doi.org/10.1186/1743-422X-2-66 |
_version_ | 1782124810797580288 |
---|---|
author | Yuan, Xiaoling Shan, Yajun Zhao, Zhenhu Chen, Jiapei Cong, Yuwen |
author_facet | Yuan, Xiaoling Shan, Yajun Zhao, Zhenhu Chen, Jiapei Cong, Yuwen |
author_sort | Yuan, Xiaoling |
collection | PubMed |
description | Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4) is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis. |
format | Text |
id | pubmed-1190220 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2005 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-11902202005-08-25 G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells Yuan, Xiaoling Shan, Yajun Zhao, Zhenhu Chen, Jiapei Cong, Yuwen Virol J Short Report Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), cause of the life-threatening atypical pneumonia, infects many organs, such as lung, liver and immune organ, and induces parenchyma cells apoptosis and necrosis. The genome of SARS-CoV, not closely related to any of the previously characterized coronavirus, encodes replicase and four major structural proteins and a number of non-structural proteins. Published studies suggest that some non-structural proteins may play important roles in the replication, virulence and pathogenesis of viruses. Among the potential SARS-CoV non-structural proteins, 3b protein (ORF4) is predicted encoding 154 amino acids, lacking significant similarities to any known proteins. Till now, there is no report about the function of 3b protein. In this study, 3b gene was linked with the EGFP tag at the C- terminus. Through cell cycle analysis, it was found that over-expression of 3b-EGFP protein in Vero, 293 and COS-7 cells could induce cell cycle arrest at G0/G1 phase, and that especially in COS-7 cells, expression of 3b-EGFP was able to induce the increase of sub-G1 phase from 24 h after transfection, which was most obvious at 48 h. The apoptosis induction of 3b fusion protein in COS-7 cells was further confirmed by double cell labeling with 7-AAD and Annexin V, the function of 3b protein inducing cell G0/G1 arrest and apoptosis may provide a new insight for further study on the mechanism of SARS pathogenesis. BioMed Central 2005-08-17 /pmc/articles/PMC1190220/ /pubmed/16107218 http://dx.doi.org/10.1186/1743-422X-2-66 Text en Copyright © 2005 Yuan et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Yuan, Xiaoling Shan, Yajun Zhao, Zhenhu Chen, Jiapei Cong, Yuwen G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title | G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title_full | G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title_fullStr | G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title_full_unstemmed | G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title_short | G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells |
title_sort | g0/g1 arrest and apoptosis induced by sars-cov 3b protein in transfected cells |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1190220/ https://www.ncbi.nlm.nih.gov/pubmed/16107218 http://dx.doi.org/10.1186/1743-422X-2-66 |
work_keys_str_mv | AT yuanxiaoling g0g1arrestandapoptosisinducedbysarscov3bproteinintransfectedcells AT shanyajun g0g1arrestandapoptosisinducedbysarscov3bproteinintransfectedcells AT zhaozhenhu g0g1arrestandapoptosisinducedbysarscov3bproteinintransfectedcells AT chenjiapei g0g1arrestandapoptosisinducedbysarscov3bproteinintransfectedcells AT congyuwen g0g1arrestandapoptosisinducedbysarscov3bproteinintransfectedcells |